PCI EXPRESS GEN 3 -COMPLIANCE AND DEBUG TESTING

Jithu Abraham, Oscilloscope Product Manager

ROHDE&SCHWARZ

Make ideas real

AGENDA

- Overview of PCIe
 - Introduction
 - Architecture
 - Form factors

R&S solutions for PCIe

- Compliance testing
- Protocol Trigger and Decode
- Signal Integrity Debug

PCI EXPRESS (PCIe)

- Introduced in 2004
- Peripheral Component Interconnect Express is the de facto standard to connect high performance IO devices to the rest of the system. Eg. NICs, NVMe, graphics, TPUs
- Computer to Peripheral Communication
- Overseen by PCI-SIG
- ► Full-duplex bidirectional

	Transfer Rate	Link BW	Total x16 BW	Coding
PCle 1.x	2.5 GT/s	2 Gbit/s	8 GB/s	8b/10b
PCIe 2.x	5.0 GT/s	4 Gbit/s	16 GB/s	8b/10b
PCle 3.x	8.0 GT/s	8 Gbit/s	~32 GB/s	128b/130b
PCIe 4.x	16.0 GT/s	16 Gbit/s	~32 GB/s	128b/130b
PCle 5.x	32.0 GT/s	32 Gbit/s	~128 GB/s	128b/130b (PAM)

- Backwards compatibility
- Still evolving...."first draft" of PCIe Gen6 was released in Feb. 2020
- 3 Rohde & Schwarz

PCI EXPRESS ARCHITECTURE - TOPOLOGY

- Shared topology only single root system
- Data Integrity and Error Handling
 - Link-level "LCRC" & End-to-end "ECRC"
- Credit-based Flow Control
 - MSI/MSI-X style interrupt handling
- Advanced power management
 - Active State PM
- ► OS independent!
- Enumeration is performed at boot up

PCI EXPRESS ARCHITECTURE

- Dual Simplex point-to-point serial connection
 - Independent transmit and receive sides
- Interconnect / Link
 - Logical connection between PCIe devices
- Scalable Link Widths
 - -x1, x2, x4, x8, x12, x16, x32
 - CPU support this by bifurcation
 - Dual differential signal pair (one pair for receive, one pair for transmit), 4 wires per Lane
- Scalable Link Speeds
 - 2.5...up to 16.0GT/s per Lane
- Packet based transaction protocol

PCI EXPRESS ARCHITECTURE - SIGNALING

- ► Terminations
 - Up to PCIe Gen 3 on-die to 100 ohms differential (+/- 15%)
 - From Gen 4 this moves to 85 ohms differential
- ► AC Coupled Differential Pairs (LVDS)
 - Voltage max. 1,200 mV, typically 800 mV
 - Reference Clock (not mandatory to be sperate)
- Clock is embedded

PCI EXPRESS ARCHITECTURE - EQUALIZATION

- PCIe 3.0 promotes equalisation at the Tx and/or Rx
 - Mitigate ISI and improve BER
- ► Transmitter (TxEQ)
 - Avoid overdriving
 - Simple 3-tap FIR filter
 - Results in De-emphasis, Flat level, Pre-shoot

Receiver (RxEQ)

- Improves data eye via behavioural algorithm
- 1st order CTLE and DFE (taps) filters

PCI EXPRESS **EVOLUTION OF FORM FACTORS – ENDPOINT**

CEM Add-in Cards

CEM Add-in Cards is the most commonly used form factor.

▶ U.2 (SFF-8639)

- U.2 is a newer and smaller form factor for connecting SSDs to computers.
- Uses 4 x PCIe lanes and 2 x SATA lanes

▶ M.2 (NGFF)

Rohde & Schwarz

8

- M.2 form factor is upcoming and even smaller than U.2
- Replaces the mSATA standard (which used mPCIe)
- Application : Ultrabooks, tablets

U.2-to-CEM Adapter

PCI EXPRESS EVOLUTION OF FORM FACTORS – ROOT COMPLEX

Motherboards

- Various different form factors
- Depending on the size, each will have different pinouts and environments
- Different set of CEM connectors
 - -x1, x4, x8, x16
- A lower adapter card can fit a higher slot. However, a larger card cannot fit a lower slot.

R&S SOLUTIONS

Compliance test PCI EXPRESS STANDARDS

Select the specification that relate to your needs

Compliance test

PCI EXPRESS AUTOMATED SOLUTION

- ► R&S[®]RTO/P-K81 and R&S[®]RTP-K83
- ▶ PCI Express 1.1/2.0/3.0 with data rate up to 8 Gbit/s
- Support of Add-in Card and System Motherboard
- Based on PCI-SIG Standard post-processing analysis software SigTest tool and test fixtures (CBB, CLB)
- Test of Signal Quality and Reference Clock
- Embedded in R&S[®]ScopeSuite Compliance Test application
- ► Step-by-step wizard for user guidance
- Clear and comprehensive test documentation

G Reck Session Add-in Card(Tx)_20170125_10061	19 🖍 Show Report 🕕 About 🕜 Holp
• A8	Step 1 of 2
▲ PCIE 1.x	2 3
 Signal Quality(4.3.3) 	
Mean Unit Interval	
Data Rate	a the second sec
Template Tests	
Min Eye Width	A CHARGE 314 B 3DHA
Mediari To Max Jitter	2 N39 2 1
Differential Output Voltage	0000
PCIE 2.0	A D L D A D L D L
▲ 2.5 GT/s	
 Signal Quality(4.3.3) 	a Q V Q Q -
Mean Unit Interval	1. Connect SMP end of SMA cables to Positive and Negative terminals of data
Data Nate	lane 0 of Compliance Base Board 2. Connect other end of the positive cable to CH1
Template Tests	3. Connect other end of the negative cable to CH3.
Min Eye Width	
Median To Max litter	
Differential Output Voltage	
Test Checked Test Single	Stop Nes

Base Board (Add-in Card testing)

Load Board (System testing)

Compliance test PCI EXPRESS COMPLIANCE PATTERNS

- Compliance Presets for all speeds
- ► These are used to equalise channel loss and optimise SI on the link
- Combination of pre-shoot and de-emphasis applied by the host system to the endpoint
- ► 100MHz clock burst to toggle through these presets

Generation	Preset #	Preshoot (dB)	De-emphasis
Gen 1	P0	-	-3.5 ± 1dB
Gen 2	P0	-	-3.5 ± 1dB
	P1	-	-6 ± 1.5dB
Gen 3	P0	0	-6 ± 1.5dB
	P1	0	-3.5 ± 1dB
	P2	0	-4.4 ± 1.5dB
	P3	0	-2.5 ± 1dB
	P4	0	0
	P5	1.9 ± 1dB	0
	P6	2.5 ± 1dB	0
	P7	3.5 ± 1dB	-6 ± 1.5dB
	P8	3.5 ± 1dB	-3.5 ± 1dB
	P9	3.5 ± 1dB	0
	P10	0	Variable

Compliance test PCI EXPRESS TEST EQUIPMENT

PCle Gen 3 – Add-In Cards

Туре	Recommended model	Description
Oscilloscope	R&S [®] RTP134	13 GHz bandwidth oscilloscope
Generator	R&S [®] RTP-B6	Built-in AWG for automated switching of compliance patterns
Pulse source	R&S [®] RTP-B7	Channel de-skew calibration
Cables and adapters	R&S [®] RT-ZA17	Pair of matched 50 Ohm SMA-SMA cables
	R&S [®] RT-ZA16	BNC-SMA adapters
Software	R&S [®] ScopeSuite	Compliance automation software

Compliance test PCI EXPRESS TEST EQUIPMENT

PCle Gen 3 - System

Туре	Recommended model	Description
Oscilloscope	R&S [®] RTP134	13 GHz bandwidth oscilloscope
Generator	R&S [®] RTP-B6	Built-in AWG for automated switching of compliance patterns
Pulse source	R&S [®] RTP-B7	Channel de-skew calibration
Cables and adapters	2 x R&S [®] RT-ZM130	13 GHz Modular probe amplifier system
	2 x R&S [®] RT-ZMA40	SMA module for Modular probe system
	2 x R&S [®] RT-ZA17	Pair of matched 50 Ohm SMA-SMA cables
Software	R&S [®] ScopeSuite	Compliance automation software
15 Rohde & Schwarz PCIe Gen 3.0 - Debug and Compliance testing		

PCI Express DEMO – GEN 3 ADD-IN CARD

Compliance test PCI EXPRESS SUMMARY

- ScopeSuite Software
- Easy to use test wizard \rightarrow No need to be an expert
- High level of automation for fast results
- Individual test selection
- Limit editor
- Possibility to repeat tests
- Result windows with pass/fail indication
- Reporting includes all details
 - Screenshots
 - Measurement results
 - Limits, pass-fail indication
 - Test summary

'est 🔗

Test Details

8.0GT PCIe 3.0 Sig	nal Quality(4.3.3.13) - I	ase 4.8.9 Preset #0	1		
Description	PCIe 3.0 Signal Qu	PCIe 3.0 Signal Quality(4.3.3.13) Preset #0			
Lane	0	0			
Run	1	1			
Result	Pass	Pass			
Time	11/27/2020 15:30:1	11/27/2020 15:30:10			
Comment					
Properties					
Name	Value	Name	Value		
SigTest Version	3.2.0	Data Lane	0		
Preset Number	0	Reference Clock	CC		
Ch1 probe skew(ps)	0	Ch3 probe skew()	os) 0		
Offline Mode	No				
Additional Informa	tion				
Measurement		Value	Limits		
Preset Number		0	Match		
Mean Unit Interval		125.001 ps	124.9625 ps < x < 125.0375 ps		
Min Eye Width		50.955 ps	x >= 41.25 ps		
Min Time Between Crossovers		0 ps	N/A		
Composite Eye Height		600 mV	x >= 34 mV		
Worst Total Eye Violations		No violation	No violation		
Min Transition Eye Height		233.368 mV	34 mV < x < 1.2 V		
Min Non Transition Eye Height		225.223 mV	34 mV < x < 1.2 V		

PCI Express PROTOCOL TRIGGER & DECODE

Protocol Trigger & Decode PCI EXPRESS PROTOCOL LAYERS

- DLLP Data Link Layer Packet
- TLP Transaction Layer Packet

Protocol Trigger & Decode PCI EXPRESS PROTOCOL TRIGGER & DECODE SOLUTION

- ► R&S[®]RTO/P-K72 and R&S[®]RTP-K73
- Full support up to 8 Gbit/s and x4 link size
- Predefined or user selectable bit rates
- Configurable DSP settings
- Reliable triggering on protocol detail
 - Transaction Layer Packets (TLP)
 - Data Layer Packets (DLLP)
 - Ordered Sets
 - Errors
- Selectable decoding layer: bits, Scrambled or Descrambled 8b10b word, final protocol layer
- Powerful search capabilities

Protocol Trigger & Decode PCI EXPRESS RELIABLE DECODE

Signal integrity debug PCI EXPRESS DESIGN AND DEBUGGING

- In standard design with socket interface, fixtures are designed to test interoperability
- Usually done in final phase I/O design

- PCIe link especially inter-chip will not be able to be tested with standard fixtures
- Quantifying design quality will be an ongoing process to validate performance

Signal integrity debug THE R&S PROBE PORTFOLIO

Signal integrity debug PCI EXPRESS DEBUGGING – ACCESS TO THE SIGNAL

- ► 13 GHz modular probes with appropriate tips
- Plan test points
- Soldering with short leads for best signal fidelity
- Browser flexible probing
- ► Note: select right probe tip for correct compensation

Signal integrity debug PCI EXPRESS DEDICATED TESTS FOR VERIFICATION & DEBUG

Timing and Level Measurements	Eye Diagram	Jitter Analysis	Automated Compliance Tests
 Verify level and timing of the signal Use cursors or automated measurements 	 Fast update rate for statistical confidence Clock-Data-Recovery (CDR) Mask tests, Histogram 	 Break-down of jitter and noise into individual components for characterization & debugging 	 Verify compliance of the physical layer to interface standards and report results
			<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>

Signal integrity debug REALTIME SIGNAL INTEGRITY UP TO 16 GHZ

Realtime Deembedding Architecture

No time consuming post-processing

27 Rohde & Schwarz

DEEMBEDDING MADE EASIER

- Option RTO/P-K121 + RTP-K122
 - SW and HW (Realtime)
- Applied during acquisition
- Trigger on deembedded signal
- ► No update rate change
- Proven Cable / Probe
 - removes transmission loss effects
 - B7 pulse source

PCI EXPRESS REAL TIME EYE ANALYSIS

- ► Further debugging tools:
 - Serial pattern trigger
 - HW CDR
 - Real-time mask testing

Add-in Card Transmitter Path Compliance Eye Requirements at 2.5 GT/s

SIGNAL MODEL JITTER K133

RTO and RTPUp to 16 GHz

- Results
 - Histograms
 - PJ Spectrum & Comps
 - Eye diagram
 - Result table
 - BER bathtub
- Step response
 Only R&S Signal-Model!

TDR/TDT ANALYSIS

- Options
 - TDR/TDT analysis option (RTP-K130)
 - 16 GHz differential pulse source (RTP-B7)
- Powerful capabilities
 - Integrated pulse source
 - Guided calibration
 - Fast results
 - Browser accessories (PacketMicro)
- Typical application
 PCB debugging

REAL TIME EYE DIAGRAM TESTING

SUMMARY

- Compliance testing for PCIe is important for PCISIG for system interoperability
- Beyond compliance it is also critical to be able to look at:
 - Decoding
 - Serial Triggering
 - Eye Diagram testing
 - Deembedding
 - Impedance control via TDR / TDT
 - Jitter analysis
- ► All in one instrument!!

Find out more

www.rohde-schwarz.com

Thank you!

ROHDE&SCHWARZ

Make ideas real

