2021 R&S POWER ELECTRONICS DAY 掌握雙脈衝測試原理和方法

CS Wong 黃俊雄 Oscilloscope Product Manager Asia 亞洲示波器產品經理

ROHDE&SCHWARZ

Make ideas real

2021 新一代 高功率電子

Wide bandgap technology (SiC 碳化矽 and GaN 氮化鎵) is driving the market adoption and paving way to new design and testing requirements

- Electrification of vehicles
- Powering data centers
- Green power
- Energy storage

Power vs frequency on electronics: device technology positioning in 2020

(Source: Power GaN: Epitaxy, Devices: Applications, and Technology Trends report, Yole Developpement, 2019)

2019-2025 power SiC market forecast split by application

(Source: Power SiC: Materials, Devices and Applications 2020 report, Yole Développement, 2020)

Power GaN device market forecast between 2019 and 2025

Source: Yole Development

DOUBLE-PULSE TESTING 雙脈衝測試 MANY USE-CASES 應用

Datasheet generation

Module production test

Module selection

Converter Design

Maximum ratings

1 Maximum ratings

For optimum lifetime and reliability, infineon recommends operating conditions that do not exceed 80% of the maximum ratings stated in this datasheet.

Parameter	Symbol	Value	Uni
Drain source voltage, 7 _{vl} ≥ 25°C	Vuss	1200	v
DC drain current for R _{thiccmain} limited by T _{viman} , V _{CS} = 18V,			
T _c = 25°C	I.	56	A
$T_{\rm C} = 100^{\circ}{\rm C}$		47	
Pulsed drain current, t_p limited by T_{symm} , $V_{05} = 18V$	Ingenter ¹	169	A
DC body diode forward current for $R_{m_{0}c,maxin}$ limited by T_{cymm} , $V_{GS} = 0V$ $T_{c} = 25^{\circ}C$ $T_{c} = 100^{\circ}C$	I _{SD}	56 36	
Pulsed body diode current, tp limited by Types	ISD,pulse ¹	169	A
Gate-source voltage ²			
Max transient voltage, < 1% duty cycle	Vas	-7 23	v
Recommended turn on gate voltage	Verm	15 18	

WHY DOUBLE PULSE TESTING 雙脈衝測試主要原因 EXAMPLE: TWO-LEVEL CONVERTER 雙準位轉換器

- A double-pulse test allows to cover all four basic operation modes
- ► All main parameters can be measured
 - Switching losses 開關損耗
 - Reverse recovery losses 反向恢复损耗
 - Switching times
 - Turn-on and turn-off delay time
 - Rise and fall times

THEORY AND TEST PROCEDURE

WHY NOT SINGLE PULSE? 單脈衝行不行?

- In most power devices, inductive load is bigger. When DUT turn off, inductive current continue to flow, causing diode to turn ON.
- Turning ON the DUT at time stage, the diode will have a reverse recovery process. This is unavailable if we only do a single pulse test.
- Double pulse test is hence more practical and realistic

BASIC OBSERVATION WAVEFORM 基本實驗波形

TYPICAL SETUP 建立雙脈衝測試平臺

CIRCUIT CONSIDERATION 雙脈衝測試搭建參數

 Components used in double-pulse test have massive influence on test result

Load inductor

- Trade-off between optimum pulse current and constant current through break
- Duration of first pulse should be below 100us to avoid self-heating of semiconductor
- Low parasitics very important, usually air coils used

Maximum inductance

Minimum inductance

CIRCUIT CONSIDERATION 雙脈衝測試搭建參數

- Components used in double-pulse test have massive influence on test result
- ► B) Capacitor bank
 - Shall maintain DC-link voltage during test
 - Low parasitic inductance important
 - Multiple units with smaller capacitance are preferred
 - Film capacitors are usually the best choice

Minimum DC-link capacitor

$$C_{\rm B} \geq \frac{L_{\rm load} \cdot I_{\rm test}^2}{2 \cdot V_{\rm DC} \cdot \Delta V_{\rm DC} - \Delta V_{\rm DC}^2}$$

Small units in parallel decrease stray inductance

THE EFFECTS OF PARASITICS 散雜電容電感的影響

 Parasitic components cause voltage spikes and ringing, EMI interference and reliability problems
 Parasitics in application do not match with datasheet setup

 → device losses differ additional testing required

Stray inductance of utmost importance

Impact of stray inductance L_{σ}

Impact of stored charge $C_{DD} + EPC$

 τ_{break} is set long enough for the voltage and currents to settle out

 τ_2 usually short enough not to exceed the reverse bias SOA

 $\tau_1 + \tau_2$ should not be too large to create self heating of the DUT

SETTING UP THE ARB WITH APP 建立任意波形軟體

Important considerations

- Clean turn-on procedure without any spikes
- Right signal levels
- Double pulse test App
 - Create ARB waveform based on test parameters
 - Recall ARB waveforms using descriptive names
 - Directly upload to external ARB or oscilloscope
- Tipp: Always check ARB signal when creating new setup

SETTING UP THE MEASUREMENT 測量搭配 – 電壓探棒篇

- Passive probes are sufficient for floating setups
 - Typically possible for device characterization setups
 - Care has to be taken on any (unintentional) grounding
- Broadband differential probes are an attractive alternative for floating setups
 - Very high bandwidth of up to 1 or 2 GHz
 - Very low loading (~ 1pF)
 - Input voltage range of +/-50V DC with 10:1 attenuator
- High-voltage differential probes are necessary if system-under-test is grounded
 - Typically the case for prototypes
 - Provide CMRR to suppress switch-node signal

Floating High-side DUT

VOLTAGE PROBING PRACTICAL ASPECTS 探棒實測考量

Passive probe connectivity

- Avoid long ground leads
- Wrap ground leads if possible
- Us CM-chokes

ended capacitance

VOLTAGE PROBING CMRR 差分探棒共模抑制

► Key parameter is rise time

 $t_{rise} \approx \frac{0.4}{BW}$

Rise time	400 ns	40 ns	4 ns
Bandwidth	1 MHz	10 MHz	100 MHz

Switch-node voltage determines required CMRR

Switch-node voltage swing	10V	100V	1000V
Required CMRR for 1 V remaining CM signal	20dB	40 dB	60 dB

Typical performance of HV-Diff Probes

CMRR (Attenuation 'Low')

SETTING UP THE MEASUREMENT 測量搭配 – 電流探棒篇 ∞

- ► Basic requirements
 - High measurement bandwidth
 - Sensor as small as possible
 - Low insertion inductance

	Coaxial shunt	Rogowski probe	Current transformer
Pro's	 Very high bandwidth (2 GHz) DC-measurement capability Very low insertion inductance 	 Physically small, no "design-in" of sensor necessary 	High bandwidth (~200 MHz)High current possible
Con's	Limited maximum currentDesign-in of sensor necessary	 Limited bandwidth (typically 30-50 MHz but recently also higher bandwidth up to 100 MHz available) Limited accuracy 	 Design-in of sensor necessary Large sensor with core, limits the possibility to have low- insertion inductance designs

DESKEW BASIC 相差校正

- Voltage and current probes have different group delay
- ► Examples
 - High voltage differential probe: ~8 ns group delay
 - Clamp-on current probe:
 - Small loop Rogowski probes:
- For accurate switching loss measurements the delay has to be compensated for (de-skew)
 - Often de-skew fixtures used but for double-pulse testing often not practicable

~15 ns

~12 – 20 ns

RT-ZF20 Power Deskew Fixture

A PRACTICAL EXAMPLE 實測案列 650V 4-PIN TO-247 SIC MOSFET (ROHM), 400V DC LINK

TURN-ON AND TURN-OFF TIMING AND ENERGY 開關過程時序與功率測量

Definition from IEC 60747-8 for MOSFET

A PRACTICAL EXAMPLE 實測案列 TURN-ON ENERGY 打開功率

$$P_{\text{turn-on}} = v_{\text{DS}}(t) \cdot i_{\text{D}}(t)$$

$$E_{\rm on} = \int_{t_{\rm I_{test10}}}^{t_{\rm V_{\rm DC10}}} P_{\rm turn-on} dt$$

PRACTICAL EXAMPLE 實測案列 DE-SKEW 相位校正

Rohde & Schwarz

PRACTICAL EXAMPLE 實測案列 CURRENT PROBE 電流探棒相位校正

No de-skew

With de-skew

Conclusion: All variants match and can be used in this example

CONCLUSIONS 總結

Double-pulse testing starts with designing the setup

- Important topics are DC link capacitor design, inductor design, probing, grounding

Careful design of measurement important

- De-skew between current and voltage signals
- Floating vs grounded setups

Design Automation requires comparability

2021 R&S POWER ELECTRONICS DAY THANK YOU 訪訪

For more information: www.rohde-schwarz.com

ROHDE&SCHWARZ

Make ideas real

