車聯網時代之車載通訊的蛻變與挑戰 - 車用乙太網路測試

Rohde & Schwarz Taiwan Ltd. Oscilloscope Andy Lin

ROHDE&SCHWARZ

Make ideas real

COMPANY RESTRICTED

AGENDA

- Automotive In-Vehicle Network trends
- Introduce to Automotive Ethernet
- Automotive Ethernet Test Requirement
 - Compliance Test
 - Automotive bus protocol Decode
 - EMI debugging
- Summary

AUTOMOTIVE TRENDS

Autonomous Driving

Electric Cars

Connectivity

COMPANY RESTRICTED

AUTOMOTIVE BUS

	LIN	CAN	FlexRay	MOST	Automotive Ethernet
Datarate	1-20kbps	125-1000kbps	10Mbps	25-150Mbps	10M-10Gbps
Phyical media	Single wire	Twisted pair wires	Twisted pair wires	Plastic Optical Fibers Unshielded Twisted Pair	Unshielded Twisted Pair
Network topology	Bus	Bus	Bus Star and combinations of Bus Star	Ring	Star
Application	LIN is a single master vehicale LAN protocol offering an excellent cost-to- performance ratio. It is used for applications such as actuator control based on switch or sensor input.	CAN is currently the standard protocol for vehicle LANs. It is used for the mail networks as well as the powertrain system, chassis system, and body system.	Flexray is a high-speed communication protocol that combines flexibility and excellent reliability. Technology based on Flexray is in active development both in Japan and oversea for a variety of applications, including next- generation X-by-wire systems and backbone systems.	MOST is a vehicle multimedia network standard that enables transfer and control of high-quality audio, video, and data. It was established by MOST cooperation, and organization with leading carmakers and equipment manufactures, as its members, and is designed to simplify connection of multimedia devices in vehichles.	Ethernet has gained attention as a protocol for fault diagnostics via electronic control units connecting system engine, chassis, and body systems to the network.

Source : Renesas

AUTOMOTIVE BUS EVOLUTION

2008~

Ethernet 10M, 100M, 1G, 2.5/5/10G, & 10G+

2005

FlexRay (consortium of automotive companies) 10M serial data bus (single or dual channel)

2001

MOST (Media Oriented Systems Transport) Shared ring topology: 25M (POF), 50M (Cu), 150M (POF, Coax)

2001

LVDS (Low-voltage differential signaling) / SerDes (Serializer / De-serializer) Point-to-point links (1-12G) for cameras and displays

1991

CAN (Controller Area Network) (500K - 2M) Low-speed serial data bus (<1K)

AUTOMOTIVE ETHERNET MARKET SIZE

- The global automotive Ethernet market size is expected to grow at a CAGR 7% during the forecast period (2018-2027)
- Growth factors for market include lower deployment cost, increase in production of vehicles, and rise in implementation of ADAS and infotainment system.

AGENDA

- Automotive In-Vehicle Network trends
- Introduce to Automotive Ethernet
- Automotive Ethernet Test Requirement
 - Compliance Test
 - Automotive bus protocol Decode
 - EMI debugging
- Summary

ONGOING PROBLEMS WITH WIRED COMMUNICATION

- Much higher demand for high speed data communication
- ► Safe communication is needed (ASIL) for autonomous driving
- Security is needed
- ► 20-100 kg cable tree is too expensive
- Electric motors are coming
- ► EMI problems start to exist

Possible Solutions:

- Ethernet (BroadR-Reach) will be widely used and rapidly adopted
- ► Introduce 48 V

▶ ...

► Measure, measure, measure.....

OUR PERCEPTION OF THE AUTOMOTIVE ETHERNET MARKET

- Higher data throughput is required for ADAS like rear view or surround view camera systems
- Industry standards need to be integrated to save cost: 100BASE-T1 instead of MOST
- Reuse of TCP/IP in different application (flashing, camera, smart antennas) helps to reduce complexity
- Ethernet standards like Audio Video-Bridging, Time Sensitive Networks enable new applications

Unshielded Twisted Pair cabling to save cost

Application		1 - C
Presentation	Applications: FTP, SOME/IP, HTTP, SMTP)	
Session	1 / Cus	
Transport	TCP, UDP	
Network	IP	
Data Link	Network Access	
Physical	100/1000BASE-T!	555
	1-	

AUTOMOTIVE ETHERNET STANDARD

- Standards: 10Base-T1S(IEEE 802.3cg), 100Base-T1(IEEE 802.3bw), 1000Base-T1(IEEE 802.3bp), NGBase-T1(IEEE 802.3ch, In progress)
- Higher data throughput is required for ADAS like rear view or surround view camera systems
- Reduce bus technologies used to save cost. No MOST, FlexRay,...
- Unshielded Twisted Pair cabling to save cost

AUTOMOTIVE ETHERNET SUMMARY

	10Base-T1S	100Base-T1	1000Base-T1	NGBase-T1
Datarate	10Mbps	100Mbps	1Gbps	2.5/5/10Gbps
Symbol rate	12.5MHz	66.66MHz	750MHz	1.4/2.8/5.6GHz
Coding	4B/5B, Differential Manchester Encoding(DME)	PAM3	PAM3	PAM4
Voltage	1Vpp	2.2Vpp	1.3Vpp	1.3Vpp
Communication	Half Duplex or Full Duplex	Full Duplex	Full Duplex	Full Duplex
Configuration	Point to Point Multidrop	Point to Point	Point to Point	Point to Point
Cable length	15/25m	15m	15m	15m
Cable type	24-26 AWG	Unshielded twisted pair	Unshielded twisted pair	Unshielded twisted pair
Application	Audio, Parking ECU, Engine ECU, Body ECU	Infotainment, Driver Assistance systems	Infotainment, Driver Assistance systems	Infotainment, Driver Assistance systems, ECU to ECU

AGENDA

- Automotive In-Vehicle Network trends
- Introduce to Automotive Ethernet
- Automotive Ethernet Test Requirement
 - Compliance Test
 - Automotive bus protocol Decode
 - EMI debugging
- Summary

AUTOMOTIVE ETHERNET COMPLIANCE

	10Base-T1S	100Base-T1	1000Base-T1	NGBase-T1
OPEN	 PHY & Protocol IEEE 802.3cg Open Alliance TC14 	 PHY & Protocol IEEE 802.3bw Open Alliance TC1 	 PHY & Protocol IEEE 802.3bp Open Alliance TC12 	 PHY & Protocol IEEE 802.3ch (in progress) Open Alliance TC in progress

TC8 ECU Specification

COMPANY RESTRICTED

AUTOMOTIVE ETHERNET ECU TEST SPECIFICATION

- ► Transmitter tests only !
- Transmitter electrical test include:
 - Transmitter outpout droop
 - Transmitter Timing Jitter in MASTER Mode
 - Transmit Clock Frequency
 - Transmitter Power Spectral Density (PSD)
 - Transmitter Distortion
 - MDI return Loss
 - MDI Mode conversion
 - MDI Common Mode emission

OPEN Alliance Automotive Ethernet ECU Test Specification

TC8 ECU Test

R&S COMPLIANCE SOLUTION

10Base T1S Recommended Equipment:

- R&S[®]RTO oscilloscope min. 600 MHz
- R&S[®]RTO-B4 OCXO
- R&S®RTO-K89 100Base-T1 Compliance SW
- R&S[®]RT-ZF7/8 Compliance Test Fixture
- R&S®RT-ZD10 Active differential probe
- R&S[®]RTO-B6 Arbitrary Waveform Generator
- R&S[®]ZND Vector Network Analyzer
- R&S[®]ZND-K5

100Base T1 Recommended Equipment:

- R&S®RTO oscilloscope min. 600 MHz
- R&S[®]RTO-B4 OCXO
- R&S[®]RTO-K24 100Base-T1 Compliance SW
- R&S[®]RT-ZF7/8 Compliance Test Fixture
- R&S®RT-ZF3 Frequency Converter
- R&S®RT-ZD10 Active differential probe
- R&S[®]RTO-B6 Arbitrary Waveform Generator
- R&S[®]ZND Vector Network Analyzer
- R&S[®]ZND-K5

1000Base T1 Recommended Equipment:

- R&S[®]RTO oscilloscope min. 2 GHz
- R&S®RTO-B4 OCXO
- R&S®RTO-K87 1000Base-T1 Compliance SW
- R&S®RT-ZF7/8 Compliance Test Fixture
- R&S®RT-ZF6 Frequency Converter
- R&S[®]RT-ZD30 Active differential probe
- R&S[®]RTO-B6 Arbitrary Waveform Generator
- R&S[®]ZND Vector Network Analyzer
- R&S[®]ZND-K5

R&S COMPLIANCE SOLUTION

Pass-Fail results

Test	Description	Run	Result	Detail
Output Droop		1	S	2/2
Transmitter Distortion No TX_TCLK No Disturber		1	S	11/11
Transmitter Timing Jitter Mastermode		1	S	1/1
Power Spectral Density		1	8	0/1
Power Spectral Density		2	S	1/1
Transmitter Clock Frequency		1	S	1/1

Value Limits 00.69 % 08 % <= x <= 102 %

00 Base Tx Amplitude Domain Tests - 9.1.4 Rescription Signal Amplitude Symmetry

Report

- Screenshot
- Measurement result
- Pass-Fail result
- Test summary

TESTING EXAMPLE

- POWER SPECTRAL DENSITY

- ► Test Mode 5 (idle frames)
- Specification: limits

► Test Setup:

UNH-IOL 美國新罕布夏大學互通測試實驗室,專門為網路和儲存產業提供測試及標準相容性服務

University of New Hampshire							UNH Home IOL Home
☆ 」 】	InterO	perability				Search	Q
101	Labora	itory			News 👻	Events 👻	Blog Contact Us My IOL
	Testing	Products & Solutions	Membership	Resources & Expertise	Product Registries	STEM	About
Home > Testing > E	thernet > Autor	notive Ethernet > Automotive	Ethernet Testing Servi	ices Equipment			

Automotive Ethernet	Automotive	Ethernet Testing Services	Equipmen	t	
Test Bed Equipment	 Testing Equipment 				
Test Plans	Testing Equipment				
Ethernet MAC/PHY Tools	Make	Model	MAC Make MAC Model	PHY Make PHY Model	Quantity
Brochure 🖪	Rohde & Schwarz	Absorbing Clamp MDS-21			1
Request Testing	Rohde & Schwarz	Rohde-Schwarz Oscilloscope RTO-2044			1
- Choose a Test Service -					

Communications Coordinator at UNH...

	UNH InterOperability Lab
iol)	1,886 followers
	14b

Stop by booth A4 to check out our #Automotive testing and **#TSN** services at the lab! We will be here all day #EIPATD in Detroit and all things #AutomotiveEthernet

UNH InterOperability ... Follow 1,889 followers

IEEE Standards Association Ethernet & Automotive Tech Day has kicked-off in Detroit! Stop by booth A4 to learn about our new TC9 Cable Testing ... see more

COMPANY RESTRICTED

Rohde & Schwarz 2021/4/6 2020 車聯網技術應用研討會 18

DEBUG AUTOMOTIVE ETHERNET WITH DECODER

COMPANY RESTRICTED

AUTOMOTIVE ETHERNET BUS QUALITY WITH A DECODER

20 Rohde & Schwarz 2021/4/6 2020 車聯網技術應用研討會

COMPANY RESTRICTED

RTO AND RTE T&D OPTION POWERFUL FUNCTIONALITY

BUS 1/C	Diagram1	: Ch1,B1							88 () 		Horiz Res: 3 RL 1 Scl: 5 Pos: 0	ontal 9.9 ns/25MSa/s 25.314 kSa RT 00.00286 µs/div 1.9
	2 ms Search1:	Ch1,B1	n to active	sea	rch re	sult)vervi urren	iew on sear it zoom pos	ch resu	Its and	er Auto rm type B1
by3∄⊂	an/gan-FD			đa	CRC 160			Error 00			Type:	C 500 al TA: Off all CBUSI CAN/CAN-F ht Wimi
330.11 µs	See Search Re	search res 9 59 ut 249 3 esults "Search1"	ult table	9 ys	349.9	9 µs	399.99 µs	449	99 µs 499,99	ys đ	49.99 µs	
Frame	State	Start	Stop	Туре	ID type	ID value [hex]	Standard	DLC	Values	CRC [hex]		
1	CRC delimiter	-2.205911 ms	-2.152645 ms	Data	11 bit	314	CAN-FD	3	[hex] 23 26 41	1ECA4		
2	Ok	-541.722 μs	-488.177 µs	Data	11 bit	64	CAN-FD	3	[hex] D0 E7 20	180F5		
3	CRC delimiter error	380.087 µs	427.329 µs	Data	11 bit	314	CAN-FD	3	[hex] 23 26 41	1ECA4		Navigation supp
4	Ok	2.044277 ms	2.097782 ms	Data	11 bit	64	CAN-FD	3	[hex] D0 E7 20	180F5		
8	Enable search	Show sea	rch dows Clear n	esults	Data f	format	Hex	Ľ				
File	lorizon <mark>A</mark>	ctivate zoo	m windov	N	ırsor	Meas	Masks S	Search	Analysis	Display	Tutorials	
												EGED

Label Support **Jecode Table** Compliance Symb. T&D Autoset Decode rigger Search I2C Х Х Х Х Х **UART/SPI** Х Х Х LIN Х Х Х Х Х CAN/CAN-FD Х Х Х Х Х Х FlexRay Х Х Х Х Х SENT Х Х Х Х Х Х Audio (I2S) Х Х Х X* MIL/ARINC Х Х Х Х Х Ethernet (10/100) Х Х Х Х Х **MIPI-RFFE** Х Х Х Х Х Manchester/NRZ Х Х X** 8b/10b Х Х Х Х MDIO Х Х Х USB (1.0/1.1/2.0/HSIC) Х Х Х Х

*: analog display support

**: serial pattern trigger support

SIGNAL INTEGRITY TESTING WITH EYE MEASUREMENT

- Eye measurement help to identify signal problems like runts or glitches
- CAN has 2 data rates- so a simple eye does not help
- CAN FD Eyes need to be separated between Arbitration Rate and Data Rate

EMI DEBUGGING: EQUIPMENT

AGENDA

- Automotive In-Vehicle Network trends
- Introduce to Automotive Ethernet
- Automotive Ethernet Test Requirement
 - Compliance Test
 - Automotive bus protocol Decode
 - EMI debugging
- Summary

SUMMARY

- The next few years will see significant sustained growth in the extent and importance of Ethernet networking in vehicles
- Cover all of Automotive Ethernet compliance test specification
- Accurately Protocol decode & Bus performance analysis solution for Automotive Ethernet

Thank You

