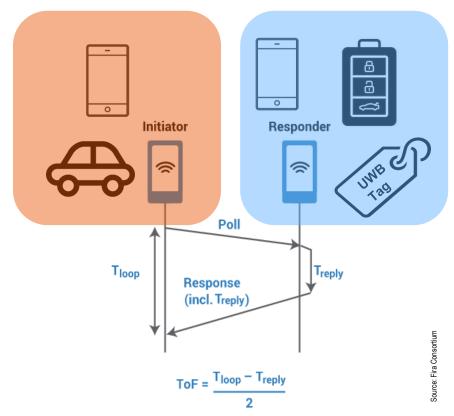
Automotive

TESTING ULTRA-WIDEBAND FOR AUTOMOTIVE APPLICATIONS

Martina Neuherz: Market Segment Manager Automotive Werner Duerport: Product Manager, Spectrum and Signal Analyzers Nikola Serdar: Product Manager, Radio Communications Testers

ROHDE&SCHWARZ

Make ideas real


AGENDA

- Technology, Standards and Market Overview
- Automotive Applications
- UWB Test Requirements
- Test Solutions for R&D and Manufacturing
- Conclusions

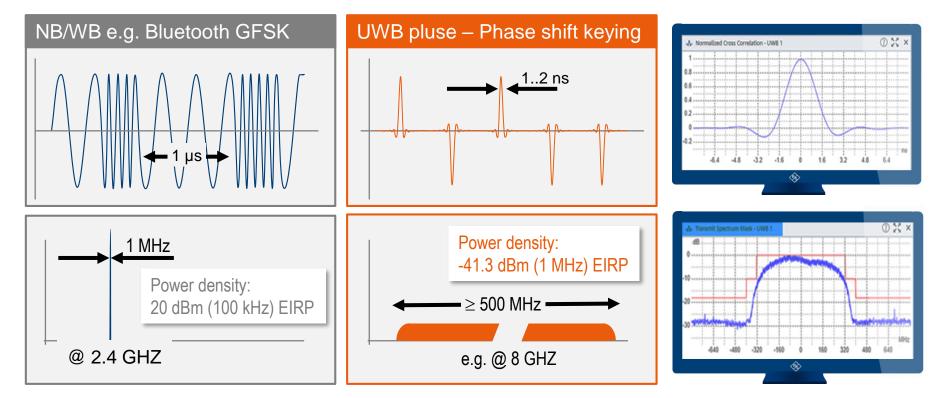
WHAT IS ULTRA-WIDEBAND ABOUT?

- The Ultra-Wideband (UWB) technology consists of narrow pulses (typically 2ns), which makes it highly immune to multi-path and interference.
- UWB uses a bandwidth between 500 MHz and 1.2 GHz (i.e. CH5 6789 MHz mainly in Automotive). UWB is difficult to jam (relay attacks).
- The in-vehicle unit can be configured to only take action when the measured distance is less than a certain vehicle manufacturer defined value (Timeof-Flight, ToF).

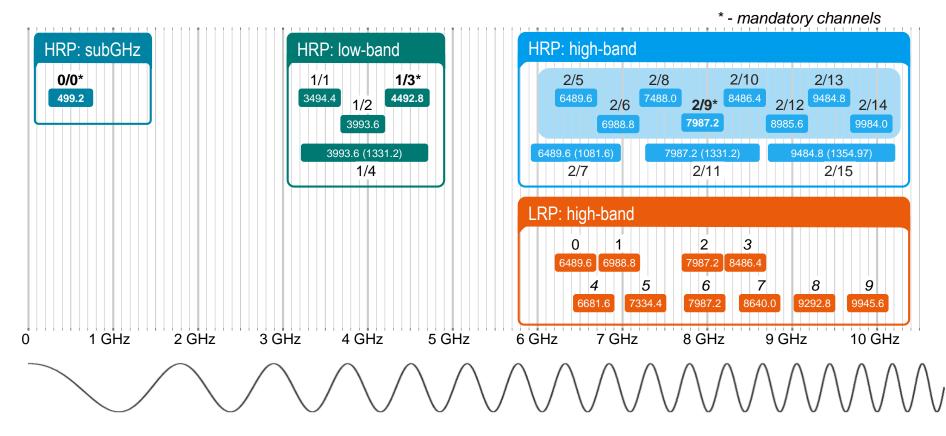
ULTRA-WIDEBAND ADVANTAGES FOR AUTOMOTIVE

► Proximity

- Inside / outside vehicle detection performance close to LF 125kHz
- Radio Security
 - Effective against relay attacks due to Time-of-Flight distance detection
- ► HW/SW Security
 - Authentication and optimized coding
- Scalable multi-car access
- Adaptable to key sharing models
- Sharing of access credentials


20 Years of ultra-wideband communication and precise ranging

 In 2002 the Federal Communication Commission (FCC) finally allowed the unlicensed use of UWB systems in radar, public safety and data communication applications.


2002	2005	2007	2012	2015	2018	2019	2020	2020
WiMedia Promotes wireless multimedia connectivity and interoperability between devices in a personal area network. First UWB spec. wimedia.org	ECMA-368 Low Rate Pulse Repetition UWB	IEEE 802.15.4a High Rate Pulse Repetition UWB	IEEE 802.15.4f Low Rate Pulse Repetition UWB	IEEE 802.15.4-2015 HRP Chap. 16 & LRP Chap. 19	Mission to be the voice of UWB ecosystem in order to support growth of UWB techn. through e2e, vendor-agnostic interoperability. uwballiance.org	Frovide seamless user experiences using the secured Flne RAnging and positioning capabilities of inter-operable UWB technology.	★ omlox Industry standard to integrate all existing technologies, such as UWB, BLE, RFID, 5G or GPS and deliver positioning data via a uniform interface. omlox.com	IEEE 802.15.4z HRP/LRP UWB enhancements
CARCONNECTIVITY consortium* Digital Key Release 3.0 planned with UWB					า UWB			

Testing Ultra-Wideband in Automotive

Ultra-wideband (UWB) : Low-power short signal pulses over a broad spectrum

Testing Ultra-Wideband in Automotive UWB channel allocation based on 802.15.4z

Impulse radio ultra-wideband (UWB) standardization: IEEE 802.15.4 (groups a, f, z)

HRP UWB PHY High Rate Pulse repetition frequency			LRP UWB PHY Low Rate Pulse repetition frequency						
RDEV	ERI	DEV	RDEV			ERDEV			
base	BPRF	HPRF	base	extend	long-range	DF	enh. DF	DF w/ EPC	
_		Modulation BPSK Pulse Rate: 124.8 MHz 249.6 MHz	Modulation OOK Pulse Rate: 1 MHz	Modulation OOK Pulse Rate: 1 MHz	Modulation PPM Pulse Rate: 2 MHz	Modulation PBFSK Pulse Rate: 1 MHz 2 MHz 4 MHz	Modulation PBFSK Pulse Rate: 1 MHz 2 MHz 4 MHz		
802.15.4a/z 802.15.4f/z 802.15.4f/z 802.15.4z RDEV: Ranging device ERDEV – Enhanced Ranging Device BPM - burst position modulation BPRF – Base pulse repetition frequency HPRF – High pulse repetition frequency PBFSK – Pulsed binary frequency shift keying PPM – Pulse Positioning Modulation EPC – enhanced Payload capacity BPSK - binary phase shift keying DF – Dual frequence OOK: On-Off Keying							• •		

Testing Ultra-Wideband in Automotive

FOR DETAILS ABOUT IEEE 802.15.4 STANDARD AND UWB TECHNOLOGY PLEASE REFER TO OUR PREVIOUS WEBINAR

A Rohde & Schwarz webinar

Discover the secrets of UWB based on IEEE 802.15.4z

Joerg Koepp Market Segment Manager

Nikola Serdar Product Manager

ROHDE&SCHWARZ

Make ideas real

Link to webinar

AGENDA

- Technology, Standards and Market Overview
- Automotive Applications
- UWB Test Requirements
- Test Solutions for R&D and Manufacturing
- Conclusions

Testing Ultra-Wideband in Automotive

UWB on mobile devices with precise ranging and secure lowpower communication

All major smartphone vendors provide UWB connectivity, e.g. iPhone 11/12, HomePod mini, Apple Watch S6 or Samsung Galaxy 20/21, Galaxy SmartTag, Google, Xiaomi and others more

11 Rohde & Schwarz

Testing Ultra-Wideband Automotive

UWB initially solving a keyless security problem is becoming a universal tool around the car

¹⁾ The Car Connectivity Consortium (CCC) is specifying Digital Key Release 3.0 based on Bluetooth Low Energy (BLE) in combination with Ultra-Wideband (UWB).

AGENDA

- Technology, Standards and Market Overview
- Automotive Applications
- ► UWB Test Requirements
- Test Solutions for R&D and Manufacturing
- Conclusions

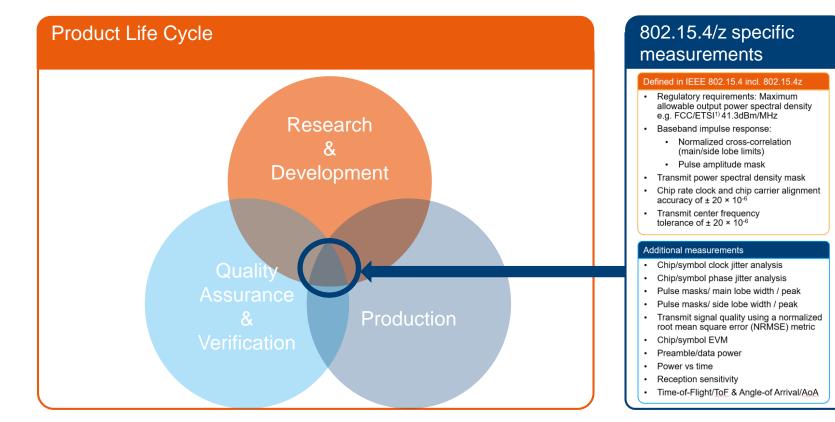
Typical PHY measurements for HRP UWB devices

Defined in IEEE 802.15.4 incl. 802.15.4z

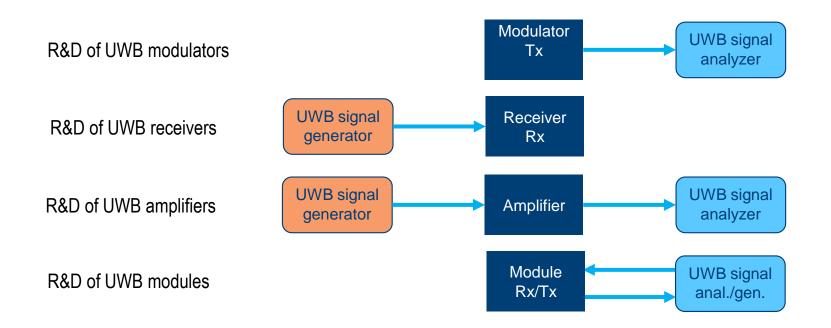
- Regulatory requirements: Maximum allowable output power spectral density e.g. FCC/ETSI¹⁾ 41.3dBm/MHz
- Baseband impulse response:
 - Normalized cross-correlation (main/side lobe limits)
 - Pulse amplitude mask
- Transmit power spectral density mask
- Chip rate clock and chip carrier alignment accuracy of ± 20 × 10⁻⁶
- Transmit center frequency tolerance of ± 20 × 10⁻⁶

ETSI related documents EN 302 065 and EN 303 883

Additional measurements


- Chip / symbol clock jitter analysis
- Chip / symbol phase jitter analysis
- Pulse masks / main lobe width / peak
- Pulse masks / side lobe width / peak
- Transmit signal quality using a normalized root mean square error (NRMSE) metric
- Chip/symbol EVM
- Preamble/data power
- Power vs time
- Reception sensitivity
- Time-of-Flight/ToF & Angle-of Arrival/AoA

AGENDA


- Technology, Standards and Market Overview
- Automotive Applications
- ► UWB Test Requirements
- Test Solutions for R&D and Manufacturing
- Conclusions

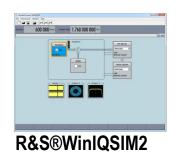
T&M APPLICATION AREAS

T&M APPLICATIONS

17 Rohde & Schwarz

TEST SOLUTIONS FOR R&D

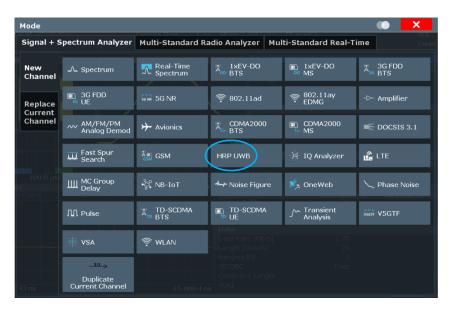
- UWB signal generation and analysis
 - R&S[®]SMM100A/SMW200A signal generators
 - R&S[®]FSW26 spectrum analyzer
 - R&S[®]RTP oscilloscope
 - R&S[®]VSE 2.0 signal analysis software



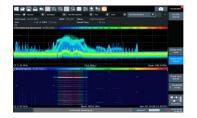
HRP UWB SIGNAL GENERATION

- ► Frequency range from 100 kHz to 12.75 GHz
 - Support of all HRP UBW bands
- ► RF modulation bandwidth up to 2 GHz
 - Support of all mandatory and optional HRP UWB channels
- Optional fading simulation and AWGN generator
- ► Works also with R&S[®]WinIQSIM2
- ► Frequency range from 100 kHz to 12.75 GHz
 - Support of all HRP UBW bands
- ► RF modulation bandwidth up to 1 GHz
 - Support of all mandatory HRP UWB channels
- ► Works also with R&S®WinIQSIM2

HRP UWB SIGNAL ANALYSIS WITH R&S®FSW26



R&S[®]FSW26

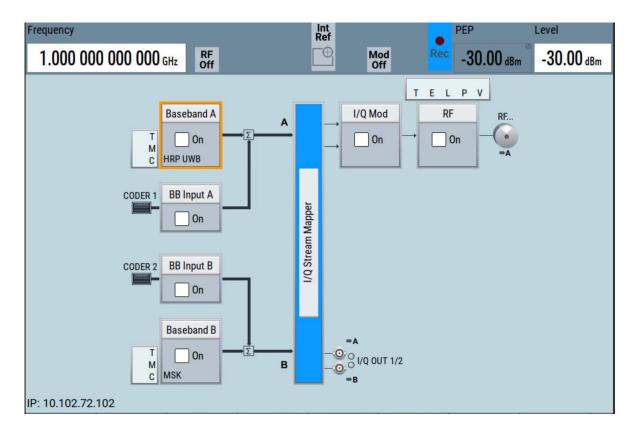

- ► Frequency range from 10 MHz (DC: 2 Hz) to 26.5 GHz
 - Support of all HRP UBW bands
- ► RF modulation bandwidth up to 2 GHz
 - With **R&S®B1200** support of all mandatory HRP UWB channels
 - With R&S[®]B2001 support of all mandatory and optional HRP UWB channels
- ► Excellent phase noise and DANL characteristic
- ► Wide range of applications and standards
- ► HRP UWB measurements with **R&S®FSW-K149** option

Testing Ultra-Wideband in Automotive

HRP UWB SIGNAL ANALYSIS WITH R&S®FSW26

Selection of standard and measurement application by mode menu

Real-time spectrum analysis up to 800 MHz of bandwidth


Amplifier measurements

Phase noise measurement

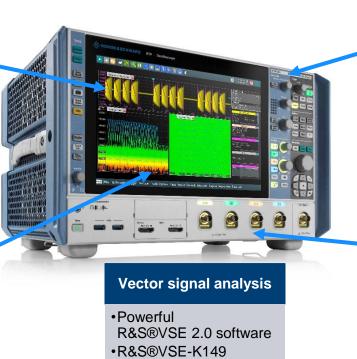
Testing Ultra-Wideband in Automotive

PRACTICAL DEMO WITH R&S®SMW AND R&S®FSW

PRACTICAL DEMO WITH R&S®SMW AND R&S®FSW

	Mode					• ×		Input/
ЗB	Signal + S	pectrum Analyzer	Multi-Standard Radio Analyzer Multi-Standard Real-Time					Signal 4 Capture
1a dBr	New Channel	M. Spectrum	Real-Time Spectrum	A 1×EV-DO BTS	IxEV-DO MS	3G FDD BTS	ŀ	Burst/
	Replace	■ 3G FDD ³⁶ UE	sgnr 5g NR	9802.11ad	奈 802.11ay EDMG	-🗁 Amplifier		Demod • Config
	Current Channel	AM/FM/PM Analog Demod	→ Avionics	CDMA2000 BTS	CDMA2000 MS	➡ DOCSIS 3.1		4 Analysis
) e		Fast Spur Search	SM GSM	HRP UWB	ja IQ Analyzer			
Dire		∭ MC Group Delay	•င္ဂို NB-IoT	May Noise Figure	🏂 OneWeb	く Phase Noise	•	
.0 .0		∭ Pulse	TD-SCDMA BTS	■ TD-SCDMA ™ UE	∫~ Transient Analysis	vsar V5GTF		
		++ VSA	후 WLAN					Display I Config
		Duplicate Current Channel					ŀ	→ → + → → → Overview

R&S OSCILLOSCOPES FOR UWB SIGNAL ANALYSIS


Advanced Trigger Capability

- •Advanced detection of pulses/ pulse sequences
- •All trigger types up to full bandwidth

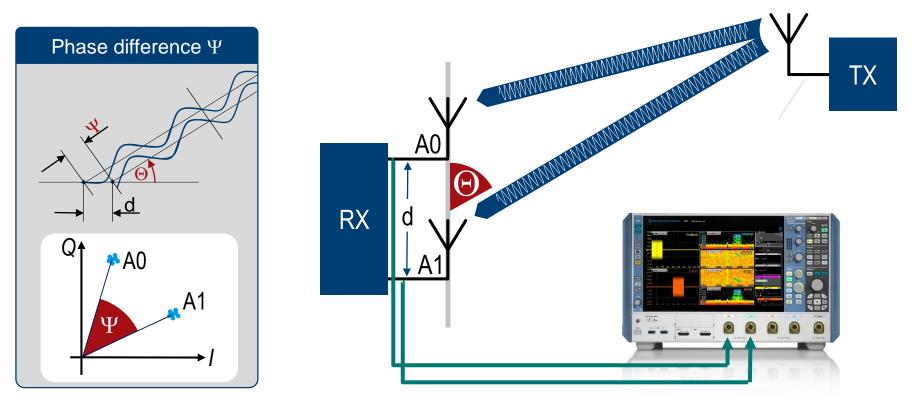
Excellent RF performance

•Flat frequency response (e.g. +/-0.25 dB for RTP)

•Powerful FFT for spectral measurements

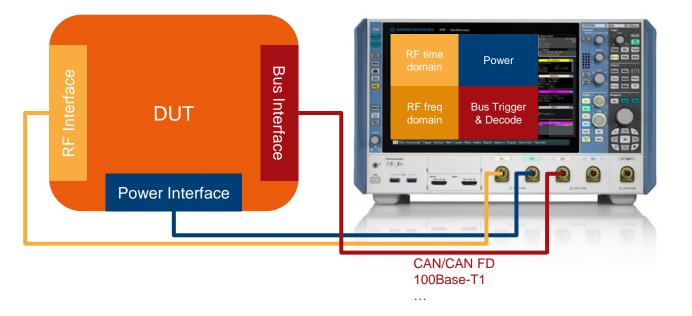
UWB application

Bandwidth up to 16 GHz


•Full coverage for all UWB channels

•Possibility to capture out-of-band emissions

Up to 4 phase coherent channels


- •Allows accurate phase difference measurements for AoA determination
- •System-level debugging by combining multiple measurements

Angle of Arrival (AoA) estimation based on phase difference

Testing Ultra-Wideband in Automotive

MULTI-DOMAIN ANALYSIS FOR SYSTEM-LEVEL DEBUGGING

System-level Debugging

Combine multiple measurements from different DUT interfaces on the same screen

.

 Look for possible correlations to determine causes of signal anomalies

TEST SOLUTIONS FOR R&D AND PRODUCTION

 UWB Non-signaling Tests including ToF Measurements

> R&S[®]CMP200 radio communication tester

R&S ONE-BOX TEST SOLUTION FOR UWB

CMP200 General Features

- 1xVSA + 1xARB
- Analyzer Frequency Range 4 to 20GHz
- Generator Frequency Range 6 to 20GHz
- 1GHz Bandwidth, 3x Ports

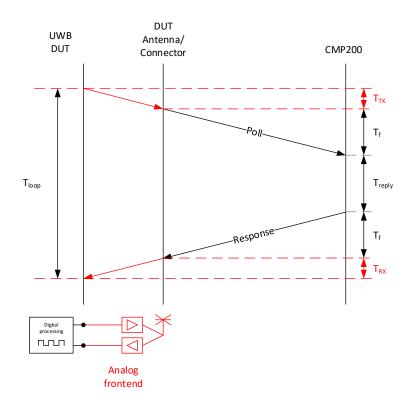
General purpose(GPRF) Generator

UWB TX measurements

HRP UWB PHY measurements

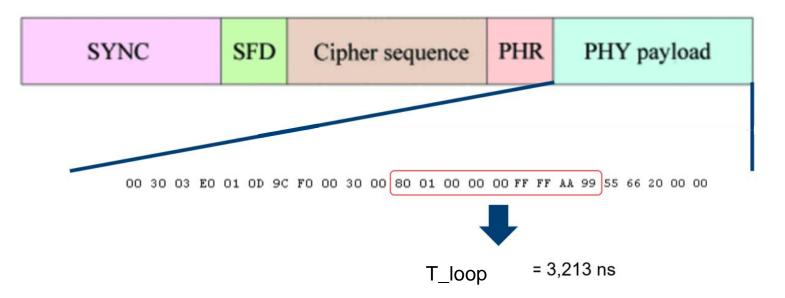
(based on IEEE 802.15.4-2015 Chapter 16)

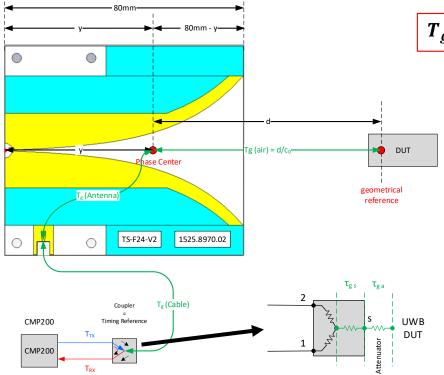
Bandgroup 2: 6.5 to 9.5 GHz


- ARB generator function; replay of predefined waveforms / Chipset specific, -90dBm
- CW signals

General purpose(GPRF) TX measurements

- IQ vs Slot
- FFT Spectrum Analyzer
- IQ Recorder
- Power measurements


DUT INITIATED CALIBRATION


- DUT sends poll packet
- CMP200 responds
- CMP200 measures T_{Reply} (high accuracy ps range)
- Clock Error / Frequency Error is measured as well. T_{loop} can be corrected accordingly

DATA DECODING

Decode payload into Bit stream and read out information needed for the Time-of-Flight procedure

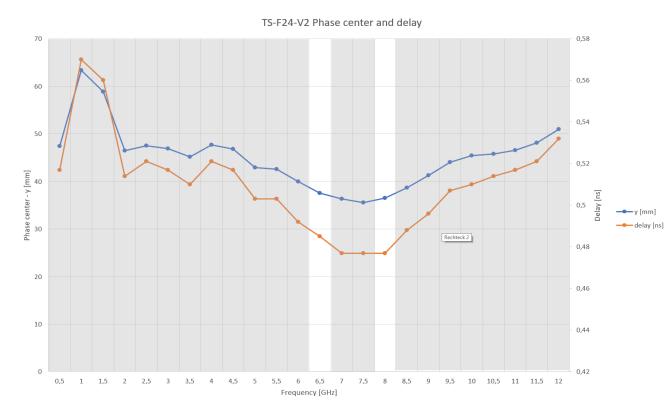
OTA SETUP WITH VIVALDI ANTENNA

$$T_{g} = T_{gs} + T_{ga} + T_{g(cable)} + T_{g(antenna)} + T_{g(air)}$$

 T_{g}

 T_{ga}

d


 C_0

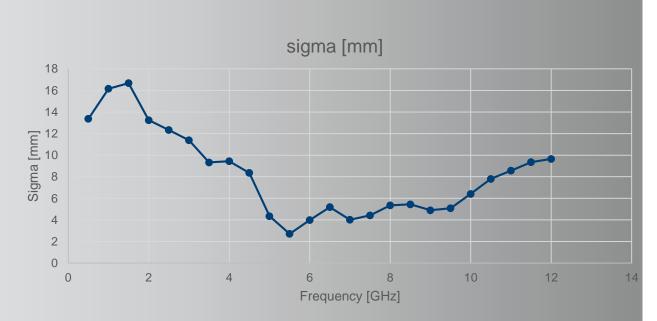
 $T_{g (cable)}$: has to be known. Keep this cable short to minimize impact.

$T_{g (antenna)}$: 483ps

- : distance from antenna phase center (right edge -43mmm) to DUT
 - : speed of light, 299.792.458 m/s

FREQUENCY INFLUENCE ON PHASE CENTER

Phase Center difference has not much impact if we only look at the important channels.


•

• We took the average for our calculation.

SIGMA OF PHASE CENTER

 Sigma describes the uncertainty of the phase center in terms of a radius of a sphere

 Valid for +/- 15° from boresight

AGENDA

- Technology, Standards and Market Overview
- Automotive Applications
- UWB Test Requirements
- Test Solutions for R&D and Manufacturing
- Conclusions

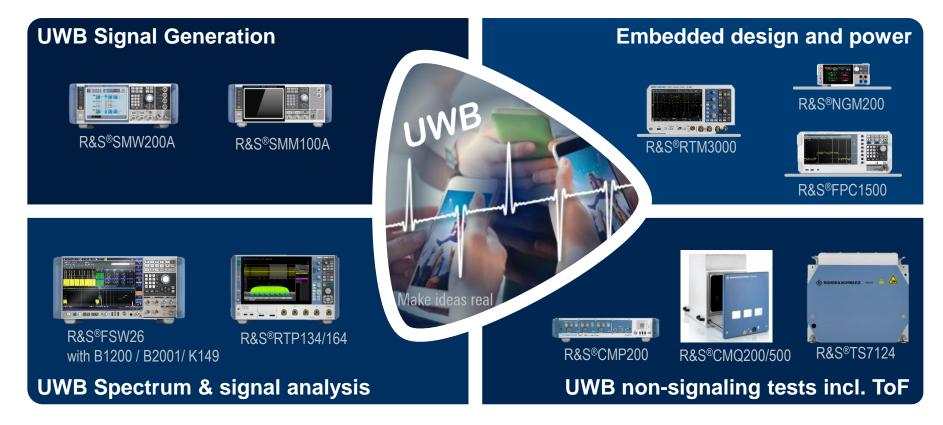
CONCLUSIONS

Digitalization is a key driver for the next generation of vehicle access. UWB is implemented in all major new smartphones, and enables multitude applications.

UWB HRP is transitioning from lab to mass production. Standardization and interoperability is ensured via IEEE, FiRa and together with BLE by the Car Connectivity Consortium.

Testing requirements are defined in IEEE 802.15.4 with the specific enhancement IEEE 802.15.4z for e.g. secure communication.

Signal Generators, Signal Analyzers and Oscilloscopes enable accurate UWB measurements dedicated for R&D applications.


The CMP200 is a UWB test solution for R&D and production. It covers all the important test fields such as Tx, Rx, ToF and AoA measurements with state-of-the-art accuracy.

Rohde & Schwarz

Rohde & Schwarz collaborates with leading industry partners to provide excellent UWB test solutions ensuring consistent device-to-device performance based on IEEE 802.15.4z

Automotive EVERYTHING YOU NEED FOR UWB TESTING

Automotive TEST IT. TRUST IT.