EFFICIENT TESTING OF MULTIPORT EW RECEIVERS

Leander Humbert, Technology Manager Radar Robert Vielhuber, Product Manager Signal Generators Florian Gerbl, Application Engineer Signal Generators

ROHDE&SCHWARZ

Make ideas real

EFFICIENT TESTING OF MULTIPORT EW RECEIVERS AGENDA

PART I

Backgrounds on ESM receivers

PART II The R&S Radar Signal Simulator

PART III

Demonstration of an exemplary test setup

BACKGROUNDS ON ESM RECEIVERS

OPERATIONAL EXAMPLES RADAR WARNING RECEIVER (RWR)

- ► 360° coverage ("bubble")
- High Probability of Intercept (instantaneous RF coverage of full relevant bands)
- Classification (friend or foe) and identification of radar
- Detection of operational mode (indication of threat level e.g. search vs. track)
- rough bearing of emitter to align instant maneuvers or counter measures (EA)

Rohde & Schwarz

OPERATIONAL EXAMPLES EMITTER LOCATION SYSTEM (ELS)

- Compared to RWR reaction times can be longer (~secs)
- 360° coverage not necessarily required
- Direction Finding has to be more accurate (~1-2°)
- Running fix processing along a flight path provide an exact position of an emitter
- Basic Data for Situational Awareness, Deployment of directed ECM or HARMs

Rohde & Schwarz

BASIC PULSE PROCESSING BLOCK DIAGRAM OF RWR/ESM PROCESSING

Block Diagram of ESM Processing

BASIC PULSE PROCESSING CLUSTERING AND DE-INTERLEAVING

Clustering Part I

- To differentiate incoming signals normally clustering algorithms build "patches" of similar parameter
- In a modern scenario several million pulses per second must be processed in real-time
- PDWs of clusters are further processed by de-interleaveing

BASIC PULSE PROCESSING CLUSTERING AND DE-INTERLEAVING

De-Interleaving and Identification Part I

- After clustering PDWs, multi-pulse analysis based on ToA of the individual pulses begins
 - interpulse structures are evaluated iteratively
 - this process is called de-interleaving, as it serves the purpose of separating individual modes and emitters
- Easiest example is an emitter with a fixed pulse repetition interval (PRI) structure
 - PRI between two neighboring pulses is calculated
 - is the PRI related to further pulses the same? If yes, then an emitter with a fixed PRI was found

BASIC PULSE PROCESSING CLUSTERING AND DE-INTERLEAVING

De-Interleaving and Identification Part II

- Two other examples on PRI structures
 Staggered PRI:
 - The PRI changes on a pulse basis but several fixed PRIs repeat in a (staggered) pattern
 - The time until the pattern repeats (the sum of individual PRIs) is called the frame PRI
 - Number of individual PRIs define the Stagger Level

Jittered PRI:

- Radar does not operate with a determined PRI, but the PRI jitters (from ESM receivers perspective)
- For matching, ToA of the next pulse has to be in an certain expectation window (jitter window)

BASIC PULSE PROCESSING WHY ACCURATE ANGLE OF ARRIVAL IS NECESSARY

Clustering Part II

- Based on RF and PW only, emitters might overlap in their parametric
 - This poses a challenge to de-interleaving and identification as time stamps (ToA) are mixed for those emitters
- adding degrees of freedom per PDW for xdimensional clustering helps to resolving those ambiguities. Most common:
 - intrapulse modulation schemes (FMOP etc.)
 - angle of arrival (high spatial resolution is necessary → Interferometry)

BASIC PULSE PROCESSING PHASE MONOPULSE AOA (INTERFEROMETRY)

Phase Monopulse Angle of Arrival (Interferometer) – Part I

- A signal from an emitter with an angle θ compared to the ESM receiver antennas spatial plane as reference is shown
- The incident isophase surfaces are parallel due to far field conditions
- The elements of the antenna array are separated by a distance d, therefore the received signal has to travel an additional distance of d · sin(θ)
- ► This corresponds to a frequency dependent phase difference of $\Delta \varphi_n = \frac{2\pi}{\lambda} d \sin \theta$ between a reference and other antenna elements
- Therefore, with a measured phase difference the angle of arrival θ can be calculated

BASIC PULSE PROCESSING DIRECTION FINDING AND EMITTER LOCATION

Phase Monopulse Angle of Arrival (Interferometer) – Part II

- Angles of arrival of the incident wave front translates to different phase offsets between the array elements
- The array architecture (number of elements) is dependent on the requirements of angular resolution

EFFICIENT TESTING OF MULTIPORT EW RECEIVERS CHALLENGES REGARDING T&M

- ► An ESM receiver must be tested in an complex signal environment
 - The key question is, can ambiguous emitters be resolved
 - If a signal generator has to drop pulses due to pulse-on-pulse situations, the de-interleaver is not tested under real-world conditions!
 - High PRI Modes and High Duty Cycle Waveforms of modern radar systems and overall emitter density make those situations the standard, not the exception
- Testing of interferometric based direction finding requires signal generators, that are
 - phase-coherent over all ports, with good long time stability
 - scalable, especially in terms of number of ports
 - easy to calibrate

EFFICIENT TESTING OF MULTIPORT EW RECEIVERS RADAR SIMULATOR MAIN CHALLENGES

- Scalable simulator hardware and software
- Phase coherent multiport testing
- Multi emitter signal generation

EFFICIENT TESTING OF MULTIPORT EW RECEIVERS DIFFERENT FLAVOURS OF RWR TESTING

EFFICIENT TESTING OF MULTIPORT EW RECEIVERS PULSE SEQUENCER SOFTWARE SCENARIO GENERATION

Pulse Sequencer bricks in data base

Pulse Sequencer Scenario

Efficient testing of multiport EW receivers

EFFICIENT TESTING OF MULTIPORT EW RECEIVERS MULTIPORT SCALABILITY

2 RF Ports	4 RF Ports	8 RF Ports	24 RF Ports
Desktop	Mobile Rack	Rack Mounted	Multi Rack
2x phase sync 44 GHz paths 2x3 pulse-on-pulse signals 2x6 MPDW/s or 1x12 MPDW/s	4x phase sync 44 GHz paths 4x3 pulse-on-pulse signals 4x6 MPDW/s or 2x12 MPDW/s Including network analyzer	8x phase sync 44 GHz paths 8x3 pulse-on-pulse signals 8x6 MPDW/s or 4x12 MPDW/s Including network analyzer	1x24 paths or 3x independent racks, each 8x 44 GHz 24x3 pulse-on-pulse signals 24x6 MPDW/s or 12x12 MPDW/s Incl. calibration and 3x high performance LO

EFFICIENT TESTING OF MULTIPORT EW RECEIVERS PHASE COHERENT RF SIGNAL GENERATION

The RF Port Alignments software together with an R&S vector network analyzer provides a standard and tailored solution for calibrating amplitude, time and phase of multiport vector signal generator setups.

Rohde & Schwarz

Efficient testing of multiport EW receivers

EFFICIENT TESTING OF MULTIPORT EW RECEIVERS **CHALLENGES IN MULTI EMITTER SIGNAL GENERATION**

Interleaving of pulses

- If two pulses overlap in time, the least important will be dropped
- Emitter priorities can be assigned
- Good and cost efficient solution to simulate hundreds of emitters
- Signals are NOT realistic due to missing pulses

- NO pulse dropping
- Overlaps are treated like in the field
- 6 pulse-on-pulse emitters per RF path
- In the past, costly and bulky test setups
- Now, extremely compact one box solution

EFFICIENT TESTING OF MULTIPORT EW RECEIVERS DEMONSTRATION OF AN EXEMPLARY TEST SETUP

Amplitude

EFFICIENT TESTING OF MULTIPORT EW RECEIVERS DEMONSTRATION OF AN EXEMPLARY TEST SETUP

Amplitudes (all traces coincident)

Phase differences (all traces coincident)

R&S RADAR SIMULATOR

- The powerful radar environment simulator
- Unprecedented flexibility
- Scalable COTS hardware & software
- Pulse-on-Pulse signals out of a single unit
- Up to 44 GHz with 2 GHz bandwidth

This and more webinars please go to: www.rohde-schwarz.com/webinars

