MULTIPLE DIRECTIONS OF ARRIVAL USING CATR OTA MEASUREMENTS

Prof. Dr. Corbett Rowell Research Director

Günter Pfeifer Product Manager OTA chambers

ROHDE&SCHWARZ

Make ideas real

WHAT IS RADIO RESOURCE MANAGEMENT (RRM)?

When to switch mobile phone to different cells (basestations) and how to measure this scenario?

System level management of radio resources: interference, transmit power, scheduling, handover,

RRM PROBE PLACEMENT

Each probe generates a far-field: simulate monitoring of signal levels for basestation handover

RRM in 3GPP FR2 standardization requires 2 angles of simultaneous arrival (3GPP TS 38.533)

• Five angular differences: 30, 60, 90, 120 and 150 degrees

DIRECT FAR-FIELD FOR RRM?

Choice 1: smaller QZ than DUT size of 30 cm 40 GHz: R = 75 cm >> QZ size of 5 cm

OR

Choice 2: QZ = DUT size But.... additional 30 dB of path loss 40 GHz: R = 24 meters

OR...?

How much is 30 dB?

Roughly the power difference between a Porsche 911 and a nuclear power plant.

INDIRECT FAR-FIELD FOR RRM?

Choice 3: QZ = DUT size, low measurement uncertainty and no increase of path loss

How?

WHAT IS CATR?

5G OTA DRIVING EVOLUTION OF CATR TECHNOLOGY

Premium high-grade antenna and radar measurement systems

5G OTA industry requirements

From premium to wide-spread

- Higher volumes required
- Cost and footprint reduction
- Different measurement needs / search for new optimal solutions

How can the wireless industry "re-invent" CATR?

??

Multiple angles of arrival

Head and hand phantoms

Extreme temperatures

CATR IFF SYSTEM REFLECTOR GEOMETRY

Reflector edge treatment is critical for system performance

8 Rohde & Schwarz

MINIMUM FREQUENCY OF CATR IFF SYSTEM

MAXIMUM FREQUENCY OF CATR IFF SYSTEM

Maximum frequency	Surface roughness (microns)	
28 GHz	75	
43 GHz (in band)	49	
87 GHz (spurious emissions)	24	
220 GHz (FCC 5 th harmonic)	nic) < 1	

- Surface roughness measurement (before and after gold-plating):
- Rqmax < 1 micron (RMS)
- Ra < 1.6 microns (arithmetic average)
- Rzmax < 45 microns (peak2peak)

 $R_a = \frac{1}{l} \int_0^{l_n} |z(x)| dx$

 $=\frac{1}{r}\int_{0}^{l_{r}}|z(x)|dx$

l, = Einzelmessstrecke l_i=Gesamtmessstrecke l_i=Taststrecke

Every R&S reflector receives full surface scan in factory Course grid and fine grid (surface roughness)

CATR IFF SYSTEM FREE SPACE PATH LOSS

Parabolic reflector power density

Transition zone

 $B = B_1 - A$

ITU-R BS.1968 (2005)

Far field zone

 $C > B_1$

P. Walt "The power density in the

antennas", 2012

radiating near field region of directive

Rohde & Schwarz 11

VERTICAL CATR SYSTEM: SAME QZ, SMALLER FOOTPRINT

How to compensate for the shorter focal length?

FOCAL LENGTH COMPENSATION WITH THE FEED ANTENNA

MULTIPLE ANGLES: HORIZONTAL CATR SETUP (20 cm QZ)

Solution: Place blocker between BS1 & BS2

"CATR Reflector Measurement System with Multiple Reflectors for Multiple Angles of Arrival in Millimeter Wave Frequency Bands," AMTA 2020

MULTIPLE ANGLES: R&S®ATS1800M VERTICAL CATR SETUP (30 cm QZ)

"Multiple CATR Reflector System for Multiple Angles of Arrival Measurements of 5G Millimeter Wave Devices," IEEE Access 2020

IFF VS. DFF MEASUREMENTS FOR 30 cm QZ

Solid lines (IFF): Measured inside R&S®ATS1800M at edge of 30 cm QZ

Dashed lines (DFF): Estimated for range = 75 cm for a 30 cm QZ
(Similar to a near field measurement without NF2FF transformation)

ACTIVE 5G HANDSET MEASUREMENT RESULTS UE RX -100 Cell 2 power -105 ***** -110

90° Cell 1

METRIC FOR CHAMBER COMPACTNESS

System	QZ size	Footprint	Footprint to QZ ratio (normalized)
Single CATR: horizontal	30 cm	4.3 m ²	1.0
Single CATR: vertical	30 cm	1.3 m ²	0.3
Multi-CATR: horizontal	20 cm	7.0 m ²	2.4
Multi-CATR: vertical	30 cm	5.2 m ²	1.2

Vertical multiple CATR system occupies roughly same footprint as traditional horizontal single reflector CATR

CONCLUSIONS

► 5G OTA

- A cornerstone of all testing: R&D, verification, conformance, production
- Refresh and evolution of CATR technique

Multiple reflector system

- Big QZ: True 30 cm quiet zone with planar waves in far-field
- Accuracy: -30 dB with full beam characterization (HPBW, sidelobes, nulls)
- Dynamic: 30 dB less path loss than DFF for accurate measurement of handover

Pointing to the future of OTA: R&S[®]ATS1800M

MULTIPLE DIRECTIONS OF ARRIVAL USING CATR OTA MEASUREMENTS

ROHDE&SCHWARZ

Make ideas real

