DATA RATE EVOLUTION IN HIGH-SPEED TECHNOLOGIES AND CHALLENGES FOR HIGH-SPEED PCBS AND INTERCONNECTS WITH PCIE 5.0

Martin Stumpf – Segment Management, High-Speed Digital Design 17.11.2022

ROHDE&SCHWARZ

Make ideas real

DATA RATE EVOLUTION IN HIGH-SPEED DIGITAL EXAMPLE: PCIE

PCIe Spec.	Raw Bandwidth (per Lane)	Data Rate (Total)	Modulation NRZ / PAM	VNA BW requirement SOC test boards	VNA BW requirement (PCBs / Cable Assemblies)
PCIe 4.0	16.0 Gbps	16.0 GT/s	NRZ	25GHz	20GHz
PCIe 5.0	32.0 Gbps	32.0 GT/s	NRZ	50GHz	40GHz
PCIe 6.0	64.0 Gbps	64.0 GT/s	PAM4	50GHz (spec. in progress)	40GHz (spec. in progress)

Note:

■ GT/s = GTransfers / sec

■ Gbps = Gbit / sec

DATA RATE EVOLUTION IN HIGH-SPEED DIGITAL EXAMPLE: IEEE 802.3

IEEE Spec.	Copper Cables	Backplanes	Signalling Bandwidth (per Lane)	Modulation NRZ / PAM	VNA BW requirement (PCBs / Cable Assemblies)
802.3by 802.3bj	25GBASE-CR 100GBASE-CR4	25GBASE-KR 100GBASE-KR4	25Gbps	NRZ	25GHz
802.3cd	50GBASE-CR1 100GBASE-CR2 200GBASE-CR4	50GBASE-KR1 100GBASE-KR2 200GBASE-KR4	50Gbps	PAM4	26.56GHz
802.3ck	100GBASE-CR1 200GBASE-CR2 400GBASE-CR4	100GBASE-KR1 200GBASE-KR2 400GBASE-KR4	100Gbps	PAM4	50GHz (spec. in progress)

MODULATION FORMATS: PAM4 VS. NRZ

Eye height for PAM4 is 1/3 of eye height for NRZ: 20 log (1/3) = -9.5 dB \rightarrow higher sensitivity to noise and crosstalk

 impedance mismatches - discontinuities at packages, vias, connectors

Example: PCIe 5.0 discontinuities on signal path between Root Complex and End Point

Source: PCI-SIG Developers Conference 2019; PCIe®5.0 Electrical Update

- losses and frequency response of PCB material
 - PCB signal traces will be by-passed by cables (lower loss) example: Samtec Flyover

Example: PCIe 5.0 total loss budget: 36 dB @ 16GHz

Source: PCI-SIG Developers Conference 2019; PCIe®5.0 Electrical Update

- ► crosstalk:
 - near end crosstalk: NEXT
 - far end crosstalk: FEXT
- multiple aggressors: power sum
 - multi-disturber NEXT: MDNEXT
 - multi-disturber FEXT: MDFEXT

- ▶ mitigate resonant structures, e.g.:
 - via stubs (→ backdrill)
 - fiber weave effects

ACCESSING THE TRANSMISSION CHANNEL AND DE-EMBEDDING LEAD-INS AND LEAD-OUTS

EXAMPLE #1: CHANNEL BETWEEN TWO SOCS

EXAMPLE #2: TEST BOARD W. LEAD-IN FOR SOC VALIDATION

EXAMPLE #3: PCIE CEM CONNECTOR / PCIE RISER CABLE

ACCURATE TEST FIXTURE MODELLING AND DE-EMBEDDING: GENERAL CONCEPT

Challenge: DUT without coaxial connectors

- setup can only be calibrated up to the coaxial connectors of the test fixture
- test fixture (lead-ins / lead-outs) needs to be characterized, i.e. modelled
- test fixture models are used to de-embed the DUT from the total ,Fixture – DUT – Fixture' structure
- reference planes are shifted to DUT

Traditional Solution:

- 2x-Thru de-embedding, modelling the lead-ins and lead-outs from a 2x-Thru replica
- ► limitation:
 - replica of lead-in ≠ lead-in
 - replica of lead-out ≠ lead-out
- new solution: impedance corrected de-embedding

ACCURATE TEST FIXTURE MODELLING AND DE-EMBEDDING: HOW IT WORKS

R&S DE-EMBEDDING ASSISTANT: ZNA, ZNB / ZNBT AND ZND WORKFLOW WITH IMPEDANCE CORRECTION

R&S De-embedding Assistant with Impedance Correction: Example ZNx-K220 / ISD

Step 1: select topology

- DUT
- lead-in
- lead-out

Step 2: measurements

- coupon(s)
- total structure

Step 3:

apply

SPECIAL CASE: PCB VERIFICATION INSERTION LOSS / INCH WITH INTEL DELTA-L 4.0

Principle of Delta-L Measurement

Reference plane A (calibration at coaxial interface)

Reference plane A (calibration at coaxial interface)

Setup with Delta-L 4.0 Probes: Example with PacketMicro Probes

R&S IMPLEMENTATION IN ZNA, ZNB / ZNBT AND ZND DELTA-L 4.0 WORKFLOW

R&S Workflow Integration for Delta-L 4.0: Example for 2L Measurement

Step 1: Structure 1, e.g. 10 inch

Step 2: Structure 2, e.g. 5 inch

Step 3: Run

MEASUREMENTS ON PCIE 5.0 CABLE ASSEMBLIES

PCIE 5.0 CABLE ASSEMBLY: EXAMPLE FOR X8 CABLE PERFORMANCE REQUIREMENTS

Frequency Range:

- 10 MHz - 24 GHz

Performance Criteria:

- return loss method of waiver: iRL
- near-end crosstalk NEXT and power sum MDNEXT method of waiver: ccICN
- far-end crosstalk FEXT and power sum MDFEXT method of waiver: ccICN
- intra-pair skew: EIPS
- inter-pair skew (lane-to-lane)

TYPICAL PCIE 5.0 MEASUREMENTS

Frequency Domain:

- ► return loss, insertion loss
- crosstalk: NEXT, FEXT
- derived values:
 - iRL (integrated return loss)
 - ccICN (component contribution integrated crosstalk noise)
 - EIPS (effective intra-pair skew)

Time Domain:

- inter-pair skew
- impedance profile

THANK YOU