Trends in Equipment Testing in LEO Satellite Operations Webinar SATELLITE LINK BUDGET ANALYSIS AND OPTIMIZATION

&

SATCOM SPECTRUM MONITORING

Benjamin Jungbauer SATCOM Solution Manager 11/30/2022

ROHDE&SCHWARZ

Make ideas real

FAIL FAST AND LEARN FAST

- Rule of ten: cost per error increases by the factor of ten over the value chain
- Simulation helps to verify and validate the intend function of a system
- Rohde & Schwarz supports to simulate SATCOM links in advance and to monitor and analyze the later operation

AGENDA

- Rohde & Schwarz at a Glance
- Satellite Link Planner
- Communication System Monitoring
- ► Satellite Receiver MSR4

Rohde & Schwarz at a Glance

FROM A TWO-MAN LAB TO A PRIVATELY OWNED GLOBAL COMPANY

- Founded in 1933 by university friends Dr. Lothar Rohde and Dr. Hermann Schwarz as "Physikalisch-technisches Entwicklungslabor" ("Physical and Engineering Development Lab")
- ► Still fully owned by the founding families
- Independent of financial and capital markets
- Tradition of long-term, sustainable and trust based customer relationships
- Since its founding, an enabler and innovator of a safer and connected world

ONE COMPANY, THREE DIVISIONS, DIVERSE MARKETS: WE ARE A RELIABLE TECHNOLOGY PARTNER

TEST & MEASUREMENT

Wireless I Industry, Components & Research I Aerospace & Defense Testing I Automotive

TECHNOLOGY SYSTEMS

Network & Security Solutions I Certified & High-Grade Crypto Solutions

CLOSE TO THE MARKET. CLOSE TO CUSTOMERS.

- Locations in around 70 countries
- ► More than 60 subsidiaries
- Worldwide development centers, sales and service offices
- ► 13,000 employees worldwide

ROHDE & SCHWARZ INRADIOS GMBH

► Founded in 2010 as a spin-off of TU Dresden

- ► Acquired by Rohde & Schwarz in 2017
- Currently around 20 experts focusing on SATCOM
- Strong R&D background

SATELLITE LINK PLANNER (R&S[®]GSASLP)

R&S®GSASLP THE LINK ENGINEERING TASK

Designing the physical parameters of a link, to ensure a specified data rate under typical use case conditions

R&S®GSASLP CHALLENGES FOR SATCOM LINKS

- ► Free space loss for GEO located satellite
 - 200dB for one path
 - Latency time 250msec for one way
- Weather interferences
 - Sun, rain, clouds

- ► Distortion/Intermods created by nonlinear components within the chain
 - Uplink amplifier
 - Transponder amplifier
- ► Footprints/coverage/directivity of antennas on the ground and within the satellite
- Sensitivity and noise behavior of the reception components within the link set-up
- ► And, very important: The required performance in terms of data-rate

R&S®GSASLP TARGETS AND GOALS FOR SATCOM LINK PLANNING

- Ensure a link with the optimization target for a defined data-rate and determine the C/N link budget
 - Footprint/coverage of the satellite
 - Consider weather conditions: clear sky, clouds and rain fall
 - QoS or service availability in percent
- Determine the required dish parameters like:
 - Size, Gain, Efficiency
- Amplifier calculation for the uplink
 - Intermod requirement
 - Number of carriers and total bandwidth

R&S®GSASLP THE R&S GSASLP SATELLITE LINK PLANNER

- Parameters for individual use cases
- Satellite coverage analysis
- Optimizing satellite and transponder equipment

- Link budget calculation
- Earth station EIRP evaluation
- Intermodulation power density analysis

- The main purpose of the GSASLP is
 - the calculation
 - the optimization
 - the analysis
 - of the link budget
- The input parameters are
 - technical specifications
 - environmental impairments

- Ground station management
- Ground station parameters of individual use cases
- Loss calculation

R&S®GSASLP MAIN PARAMETERS

Description	ES Medium
HPA output power [W]	360
Transmitting antenna gain [dBi]	48.36
Tx reference frequency [MHz]	7501.131
Max. EIRP [dBW]	73.22
Minimal OBO [dB]	2
Tracking stability [dB]	0
EIRP stability [dB]	0
Receiving antenna gain [dBi]	48.36
Rx reference frequency [MHz]	7501.131
Antenna diameter [m]	4.3
Antenna efficiency [%]	
System G/T [dB/K]	30
Off-axis antenna gain [dBi]	0
Downconverter frequency [MHz]	0

Manufacturer: PARADISE DATACOM Modem type description: QUANTUM PD 25

Modulation	Coding	FEC rate
8PSK	TPC 2G	3/4
8PSK	TPC 2G	7/8
8PSK	TPC 2G	1
QPSK	TCM	2/3
QPSK	TCM	1
QPSK	TCM + RS	2/3
QPSK	TPC	7/8
QPSK	TPC 2G	1/2
QPSK	TPC 2G	3/4
QPSK	TPC 2G	7/8
QPSK	TPC 2G	1
QPSK	Viterbi	1/2
QPSK	Viterbi	3/4
QPSK	Viterbi	7/8
QPSK	Viterbi	1

Name: A Satellite type: G Geolocation: 2	Arabsat5C GEO 10° 0' 0'' (E)				
Transponder	UL beam	DL beam	UL frequency [MHz]	DL frequency [MHz]	Transponder type:
1	Spot1	Spot1	27000	17800	Transparent
10	Spot10	Spot10	27000	17800	Transparent
11	Wide	Wide	5400	3600	Transparent
2	Spot2	Spot2	27000	17800	Transparent
3	Spot3	Spot3	27000	17800	Transparent
4	Spot4	Spot4	27000	17800	Transparent
5	Spot5	Spot5	27000	17800	Transparent
6	Spot6	Spot6	27000	17800	Transparent
7	Spot7	Spot7	27000	17800	Transparent
8	Spot8	Spot8	27000	17800	Transparent
9	Spot9	Spot9	27000	17800	Transparent

R&S®GSASLP PAYLOAD SIMULATION

R&S®GSASLP LINK ANALYSIS

R&S®GSASLP

		Carrie	r 🗕	1		2	3	4	5	6	7	
New Analysis	Optimization	Chann	nel	Ku33_3		Ku33_3	Ku33_3	Ku33_3	Ku33_3	Ku33_3	Ku33_3	K
scenario		Tx gs l	location	Kastellaun	1	Kairo	Kastellaun	Athen	Kastellaun	Maradah	Kastellaun	E
		Tx as t	type	FS Medium	n	FS Large	FS Medium	ES Large	ES Medium	ES Large	FS Medium	F
Scenario		Turne	dama tema a	M2 Carias DV/		indian DVD CD	M2 Carles DVR C	2 M2 Carles DVR 5			20 Catline 1000	
		TX mo	dem type	IVID Series DVI	D-32 IVI3 :	eries DVD-52	IVID Series DVD-3	2 IVID Series DVD-54	2 SKTWAIN IDU 70	UU SKTWAN IDU 70	JUU SALLINK TUUU	Jaal
	Donohr	ork in	tha n	owor	_	14173.05	14175.07	14179.39	14184.75	14187.86	14189.93	
	Denchin	Iark is	ine p	ower	1	Castellaun	Athen	Kastellaun	Maradah	Kastellaun	Bergen	Ka
Proposal: Ouisk newsrafting						Cause Descert	ES Large	ES Medium	ES Large	ES Medium	ES Large	ES
Quick power end end	equivale	ent bai	ndwid	th	251	Save Report	13 Series DVB-S	2 M3 Series DVB-S	SKYWAN IDU 70	00 SKYWAN IDU 70	00 SatLink 1000) Sati
Could close 8 / 8 Miks.	1						11122.07	11127.20	11122.75	11125.06	11127.02	
TWTA out to power [dBW]: 33.97	TWTA output power [%]:	1.98					11125.07	11127.39	11132.75	11135.00	11157.95	
Ku33_3 23.071	69.91						45-					
Ku33_3 23.071	69.91	2	3	4	5	6	45-					
Carrier Used bandwidth [MHz]	69.91	2 0.82	3 4.12	4	5 5.27	6 0.66 3	45-					
Chainer Banowou (MHz) Ku3_3 23.071 Carrier Used bandwidth [MHz] Bandwidth [%]	69.91	2 0.82 2.5	3 4.12 12.48	4 4.94 14.98	5 5.27 15.98	6 0.66 3 2 9.	45					
Carrier Used bandwidth [MHz] Bandwidth [%] Current PEB [MHz]	69.91 3.3 9.99 0.04	2 0.82 2.5 0.01	3 4.12 12.48 0.04	4 4.94 14.98 0.05	5 5.27 15.98 0.1	6 3 0.66 3 2 9. 0.01 0.	45					
Carrier Used bandwidth [MHz] Bandwidth [%] Current PEB [MHz] Percentage of power output [%	69.91 3.3 9.99 0.04 0.11	2 0.82 2.5 0.01 0.03	3 4.12 12.48 0.04 0.11	4 4.94 14.98 0.05 0.15	5.27 15.98 0.1 0.31	6 0.66 3 2 9 0.01 0 0.04 0	45-	[
Chainer Bahwindin (WH2) Ku33_3 23.071 Carrier Used bandwidth [MHz] Bandwidth [%] Current PEB [MHz] Percentage of power output [% Ground station Tx EIRP [dBW]	69.91 1 3.3 9.99 0.04 0.11 38.24	2 0.82 2.5 0.01 0.03 35.38	3 4.12 12.48 0.04 0.11 38.42	4 4.94 14.98 0.05 0.15 39	5 5.27 15.98 0.1 0.31 43.07	6 0.66 3 2 9 0.01 0 0.04 0 37.18 40	45					
Carrier Used bandwidth [MHz] Bandwidth [%] Current PEB [MHz] Percentage of power output [% Ground station Tx EIRP [dBW] Downlink EIRP [dBW]	69.91 1 3.3 9.99 0.04 0.11 38.24 21.4	2 0.82 2.5 0.01 0.03 35.38 15.02	3 4.12 12.48 0.04 0.11 38.42 21.59	4 4.94 14.98 0.05 0.15 39 22.8	5 5.27 15.98 0.1 0.31 43.07 25.93	6 0.66 3 2 9 0.01 0 0.04 0 37.18 40 16.54 2	45				C/N UL	
Claimler Barlowdur (WH2) Ku33_3 23.071 Carrier Used bandwidth [MHz] Bandwidth [%] Current PEB [MHz] Percentage of power output [% Ground station Tx EIRP [dBW] Downlink EIRP [dBW] Margin DL EIRP FreCo [dB]	- 1 69.91 - 1 3.3 9.99 0.04 0.01 38.24 21.4 /	2 0.82 2.5 0.01 0.03 355.38 15.02 /	3 4.12 12.48 0.04 0.11 38.42 21.59 /	4 4,94 14,98 0.05 0.15 39 22.8 /	5 5.27 15.98 0.1 0.31 43.07 25.93 /	6 0.66 3 2 9 0.01 0 0.04 0 37.18 40 16.54 2 /	45				C/N UL C/IM C/IM C/IM C/IN C/IN	
Ku33_3 23.071 Ku33_3 23.071 Carrier Used bandwidth [MHz] Bandwidth [%] Current PEB [MHz] Percentage of power output [% Ground station Tx EIRP [dBW] Downlink EIRP [dBW] Margin DL EIRP FreCo [dB] Transponder	69.91	2 0.82 2.5 0.01 0.03 35.38 15.02 /	3 4.12 12.48 0.04 0.11 38.42 21.59 /	4 4.94 14.98 0.05 0.15 39 22.8 /	5 5.27 15.98 0.1 0.31 43.07 25.93 /	6 2 9 0.01 0.04 0.04 0.04 0.04 0.04 16.54 2 VO VO VO	45				C/N UL C/IM C/IM C/N DL C/N DL C/N DI Target C	C/N [dl
Carrier Used bandwidth [MHz] Bandwidth [%] Current PEB [MHz] Percentage of power output [% Ground station Tx EIRP [dBW] Downlink EIRP [dBW] Margin DL EIRP FreCo [dB] Transponder Channel	69.91	2 0.82 2.5 0.01 0.03 3538 15.02 / /	3 4.12 12.48 0.04 0.11 38.42 21.59 / Ku33_3	4 4,94 14,98 0.05 0.15 39 22.8 / /	5 5.27 15.98 0.1 0.31 43.07 25.93 / Ku33_3	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	45-				C/N UL C/M C/M C/N DL C/N DT Target C	C/N [dl
Channel Transponder gain step	Barlowidu [199] 69.91 1 3.3 9.99 0.04 0.11 38.24 21.4 / Ku33_3 0 10.21	2 0.82 2.5 0.01 0.03 35.38 15.02 7 Ku33_3 0	3 4.12 12.48 0.04 0.11 38.42 21.59 / Ku33_3 0 100.41	4 4,94 14,98 0,05 0,15 39 22,8 / Ku33_3 0 Ku33_3 0	5 5.27 15.98 0.1 0.31 43.07 25.93 / Ku33_3 0	6 6 6 6 6 9 9 9 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0	45				C/N UL C/M C/N UL C/N UL C/N UL C/N UL	C/N [dł
Chaining Barlowdon (WH2) Ku33_3 23.071 Carrier Used bandwidth [MHz] Bandwidth [%] Current PEB [MHz] Percentage of power output [% Ground station Tx EIRP [dBW] Downlink EIRP [dBW] Margin DL EIRP FreCo [dB] Transponder Channel Transponder gain step Eff. fransponder gain [dB] SCD [dBM/c=2] SCD [dBM/c=2]	- 1 - 1 - 3.3 9.99 0.04 0.11 38.24 21.4 / / Ku33_3 0 192.44 0 192.44 0 0 192.44 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0.82 2.5 0.01 0.03 35.38 15.02 / Ku33_3 0 192.44	3 4.12 12.48 0.04 0.11 38.42 2.159 / Ku33_3 0 192.44	4 4.94 14.98 0.05 0.15 39 22.8 / Ku33_3 0 Ku33_3 0 192.44	5 5.27 15.98 0.1 0.31 43.07 25.93 / Ku33_3 0 192.44	CU 1920 CU 100 CU 10	45				C/N UL DC/M DC/ND C/N D Target C	C/N [d
Chaining Bandwidth (WH2) Ku33_3 23.071 Carrier Used bandwidth (MH2) Bandwidth (%) Current PEB (MH2) Percentage of power output (%) Ground station Tx EIRP (dBW) Downlink EIRP (dBW) Margin DL EIRP FreCo (dB) Transponder Channel Transponder gain step Eff. transponder gain (dB) SFD (dBW/m ²) IBO (eIR)	 anional (%) 69.91 3.3 9.99 0.04 0.11 38.24 21.4 7 Ku33_3 0 192.44 -90 23.26 	2 0.82 2.5 0.01 0.03 35.38 15.02 / Ku33_3 0 192.44 - 90 29.0	3 4.12 12.48 0.04 0.11 38.42 2.159 /	4 4,94 14,98 0,05 0,15 39 22,8 / Ku33_3 0 192,44 -90 33,06	5 5.27 15.98 0.1 0.31 43.07 25.93 / Ku33_3 0 192.44 -90 23.08	6 0.66 2 9 0.01 0 0.04 0 37.18 40 16.54 2 V V V V V V V V V V V V V	45 40 35 30 25 20 15 10				C/N UL C/M C/M C/N C/N Target C	C/N [df
Chainter Bandwidth (WH2) Ku33_3 23.071 Carrier Used bandwidth [MH2] Bandwidth [%] Current PEB [MH2] Percentage of power output [% Ground station Tx EIRP [dBW] Downlink EIRP [dBW] Margin DL EIRP FreCo [dB] Transponder Channel Transponder gain step Eff. transponder gain [dB] SFD [dBW/m²] IBO [dB] Opo [dB] Opo [dB]	Barlowidu [193] 69.91 1 3.3 9.99 0.04 1 3.824 21.4 7 Ku33_3 0 192.44 -90 -23.98 1722	2 0.82 2.5 0.01 0.03 355.38 15.02 / / Ku33_3 0 192.44 -90 -23.90 -23.90	3 4.12 12.48 0.04 0.11 38.42 2.159 7 7 Ku33_3 0 192.44 -90 -23.98	4 4,94 14,98 0.05 0.15 39 22.8 / / K <u>U33_3</u> 0 192.44 -90 -23.98 -23.99	5 5.27 15.98 0.1 0.31 43.07 25.93 / Ku33_3 0 192.44 -90 -23.98	6 0.66 2 9 0.01 0 0.04 0 16.54 2 W V V V V V V V V V V V V V	45- 40- 35- 25- 15- 10- 5-				C/N UL C/M C/N UL C/N UL C/N UL Target C	

BETTER SAFE THAN SORRY

- ► 1,700 satellites launched every year by 2030
- Frequency spectrum is a limited good
- National licenses differ from each other
- Local impairments can show negative effects elsewhere
- Effects between terrestrial and noneterrestrial networks

The list of bad news is endless...
... see what's our answer

COMMUNICATION SYSTEM MONITORING (R&S[®]GSACSM)

SATCOM MONITORING FOR CONTROL OF SATELLITE COMMUNICATION OPERATIONS

- Complexity is increasing because of
 - Missing standards
 - More players in SatCom
 - Mission-critical links
 - Increasing interference
- The task is to monitor the failure-free communication and to determine impairments in operation

Our solution

- CSM monitoring software
- MSR4 satellite receiver

Our customers

SATELLITE OPERATOR

Satellite Intelligence SATCOM PORTFOLIO

- R&S®GSACSM combines several features in one software-suite
 - Classic spectrum analyzer functions
 - Trapping systems
 - Advanced signal detection
 - Identification algorithms
- R&S®MSR4 as multipurpose satellite receiver with a unique SWaP concept for different use cases
 - As high-performance RF frontend for software defined radio solutions
 - Flexible feature configuration by software licenses only

R&S®GSACSM

SIGNAL ANALYSIS

- Automatic detection of carriers in the spectrum
- Visualization of constellation diagrams and signal parameters
- All common types of modulation supported (QPSK, 8QAM, 8PSK, 32APSK, etc.)
- All common satellite standards supported (DVB-S, DVB-S2, IESS, etc.)
- Detection of carrier in carrier signals

R&S®GSACSM SATCOM INTERFERENCE HUNTING

- ► Source for interference might be
 - ► other satellite signal
 - terrestrial signal
- Demodulation, decoding and subtraction of wanted signal
- Underlying interfering signal is displayed and classified

Multipurpose Satellite Receiver MSR4 FACT SHEET

- Small form factor with
 - 4 RF inputs
 - 2 RF outputs

Rx and Tx are tunable and operate simultaneously in L-Band with 200 MHz real-time bandwidth each

- ► 10 Gbit/s streaming output for each input
- ► Web-based graphical user interface
- Software Defined Radio for flexible applications with high performance analog frontend

Multipurpose Satellite Receiver MSR4

- ► IQ Streaming for software defined radio applications
 - Up to 4x 200MHz Rx simultaneously to an external device
 - Up to 2x 200MHz Tx simultaneously
 - 1x from 10Gbit/s Ethernet to Tx
 - 1x from Rx to the internal storage device

- R&S GSACSM Server
 - 4x 200MHz sensors
 - SatCom monitoring with multiple functions
 - Autonomous detection and classification of SatCom signals

Thank You!

Benjamin Jungbauer

ROHDE & SCHWARZ SOLUTION MANAGER SATCOM

BENJAMIN.JUNGBAUER@ROHDE-SCHWARZ.COM