COMPACT AND EFFICIENT AUTOMOTIVE RADAR TESTING

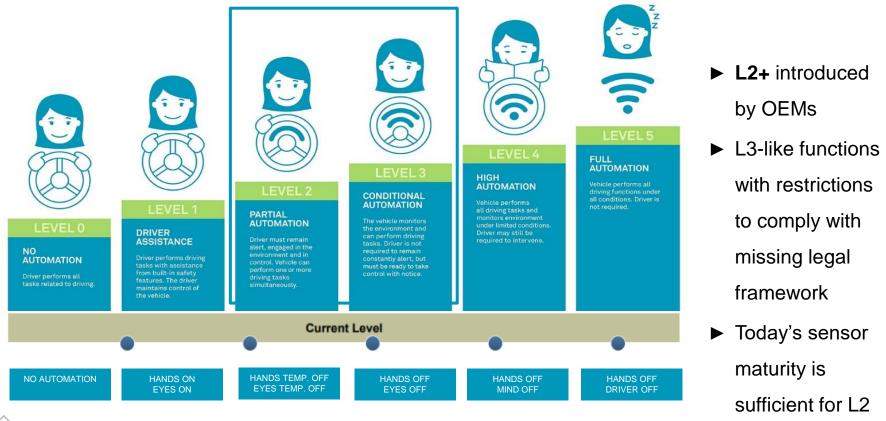
Andreas Ibl, Systems development engineer, Microwave Imaging

Jeremy Carpenter, Technology marketing expert

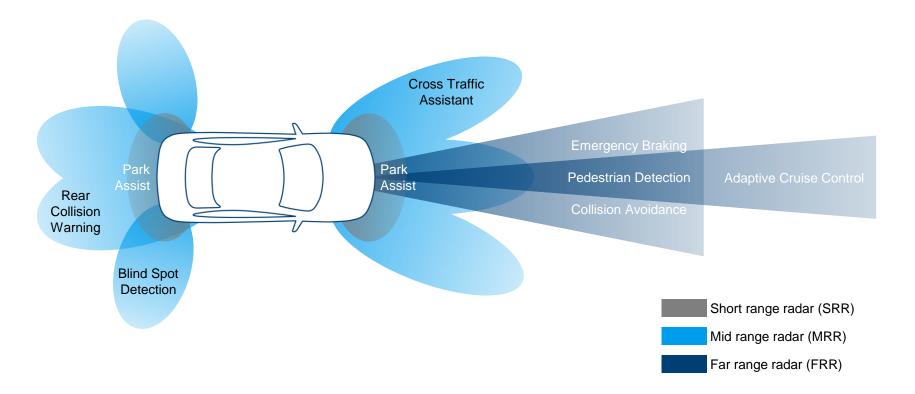
ROHDE&SCHWARZ

Make ideas real

AGENDA


- Automotive radar technology overview
- Radar object simulation test challenges
- The possibilities of benchtop radar sensor testing
- Practical demonstration
- Summary and learnings

AGENDA


Automotive radar technology overview

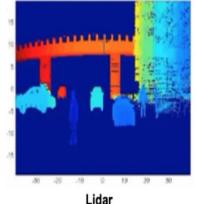
- Radar object simulation test challenges
- The possibilities of benchtop radar sensor testing
- Practical demonstration
- Summary and learnings

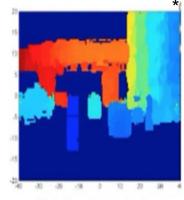
LEVELS OF DRIVING AUTOMATION (SAE J3016[™])

RADAR BASED AUTONOMOUS DRIVING

Rohde & Schwarz

Compact and efficient automotive radar testing


COMPANY RESTRICTED

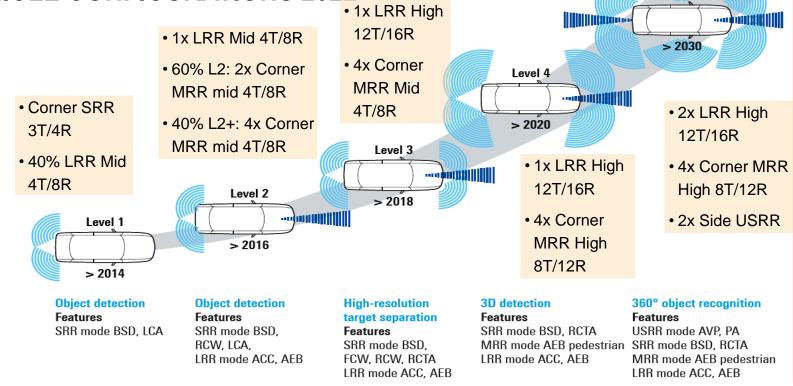

R&S Solutions for Automotive Radar

RADAR INNOVATION IS THE KEY ENABLER FOR AUTONOMOUS DRIVING

► 4D radar

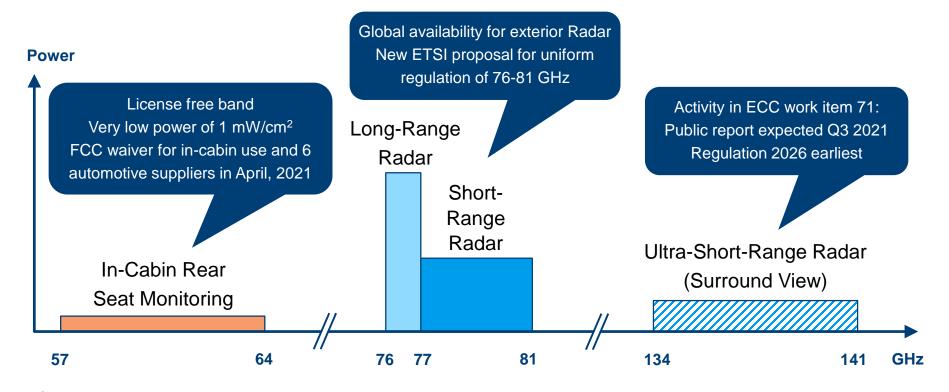
- Can reach Lidar-like 3D resolution in the range of 100k detectable reflections (distance and angle)
- Instantaneous hi-resolution velocity information for every reflection as 4th dimension

High Resolution Radar


- New modulations schemes like PCMW or OFDM will enhance robustness against interference
- ► Virtual aperture can significantly increase resolution and field of view
- ► Artificial intelligence will improve object detection and tracking capabilities

*image courtesy of NXP

R&S Solutions for Automotive Radar


RADAR TECHNOLOGY TRENDS VEHICLE CONFIGURATIONS 2022

Level 5

R&S Solutions for Automotive Radar

AUTOMOTIVE RADAR FREQUENCY MAP 76-81 GHZ GLOBALLY AVAILABLE

RADAR TECHNOLOGY TRENDS TYPICAL SENSOR PARAMETERS

Radar Module Parameters	Short-Range Radar	Standard Mid- Range Radar	Premium Mid- Range Radar	Standard Long- Range Radar	Premium Long-Range Radar
Frequency Range [GHz]	24,76-77,77-81	76-77	77-81	76-77	76-77
Typical Bandwidth [MHz]	200, 1000, 4000	1000	2000	500	1000
Range [m]	80	150	150	250	300
Range Resolution [cm]	300, 30, 3.5	30	7.5	75	30
FOV Azimuth / Elevation [°]	±60 / ±0	±30 / ±0	±50 / ±15	±15 / ±5	±15 / ±10
Typical Channel Number [Transmit / Receive]	3 TX / 4 RX	4 TX / 8 RX	8 TX / 12 RX	4 TX / 8 RX	12 TX / 16 RX

RADAR TECHNOLOGY TRENDS NEW MODULATION SCHEMES FOR BETTER INTERFERENCE IMMUNITY

Modulation Technique	Today: FMCW	Near Future: PMCW	Long term: OFDM	
Waveform	f f / / / / / / / / / / / / / / / / / /	θ t ~0.5 ns	P(f)	
Waveform Duration	~10 µs	~1 µs	~1 µs	
ADC Sample Rate	~50 MSample/s IQ	>1 GSample/s IQ	>1 GSample/s IQ	
Interferer Robustness	Good	High	High	
Massive MIMO	Multi-Phase, Chirp Coded	Phase Coded	Orthogonal Sub-Carrier	

AGENDA

- Automotive radar technology overview
- Radar object simulation test challenges
- The possibilities of benchtop radar sensor testing
- Practical demonstration
- Summary and learnings

TEST IMPLICATIONS OF TECHNOLOGY DEVELOPMENTS

- New frequency bands, modulation schemes, higher bandwidths and complex modulation schemes and MIMO
- L3 and beyond systems requires Virtual Integration and Vehicle-inthe-Loop validation
- Advanced tests during R&D of automotive radar sensors and testing of ADAS features require multiple dynamic artificial objects
- ► These artificial objects must be dynamic in terms of:
 - Distance
 - Size (Radar Cross Section RCS)
 - Radial velocity (Doppler frequency shift)
 - Angular direction
- Higher levels of autonomous driving require multiple radar sensors in a single vehicle which have to be stimulated simultaneously

RADAR OBJECT SIMULATION CHALLENGES

Limitation of current laboratory test options

- OTA sensor stimulation required
- Limited scenario testing capabilities
- Azimuthal moving targets challenging to simulate

Reproducible and standardized testing

- Millions of test kilometers on test track
- Increased ADAS capabilities

Complex and time critical driving tests

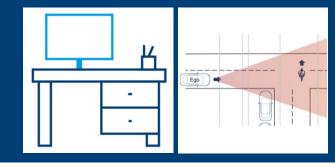
- Limited test capability on public roads
- A roadworthy prototype is required

→ Historically bulky, expensive & inflexible test systems

Rohde & Schwarz

AGENDA

- Automotive radar technology overview
- Radar object simulation test challenges
- The possibilities of benchtop radar sensor testing
- Practical demonstration
- Summary and learnings



RADAR OBJECT SIMULATION APPLICATIONS

Functional Testing

Benchtop & Scenario testing

Hardware-in-the-Loop

Vehicle-in-the-Loop (together with AVL)

RADAR OBJECT SIMULATION APPLICATIONS & SOLUTIONS

Functional Testing	Benchtop & Scenario testing	
R&S®QAT100	R&S®AREG800A R&S®QAT100	
Hardware-in-the-Loop	Vehicle-in-the-Loop (together with AVL)	
	venicie-in-the-Loop (together with AvL)	
	venicle-in-the-Loop (together with AvL)	

Rohde & Schwarz

FUNCTIONAL TESTING

FUNCTIONAL TESTING

Echo detection

Azimuth estimation

Angular separation

SCENARIO TESTING

System Overview

EXEMPLARY DRIVING SCENARIOS MATCHING INSTRUMENT CONFIGURATIONS

Enables advanced NCAP, AEB, ACC and other scenarios

- Simulation of targets moving in azimuth, range, radial velocity and target size.
- Simultaneous stimulation of multiple radar sensors.

ELECTRONICALLY STEERABLE FRONTEND FOR VERIFYING AUTOMOTIVE RADAR

R&S[®]QAT100 FRONTENDS VERSIONS

R&S®QAT100 with QAT-B11 (SIMO) frontend

- ▶ 96 transmit & 5 receive antennas
- Optional second independent TRX line
- Simulation of up to 8 echoes from different directions

R&S®QAT100 with QAT-B21 (MIMO) frontend

- ▶ 96 transmit / receive antenna pairs
- Optimized for MIMO technology
- Simulation of up to 4 echoes from different directions

ADVANTAGES R&S®QAT100 VS. MECHANICAL APPROACH

OTA radar stimulation with azimuth simulation without needing to physically move antennas:

- Higher repeatability
- Less wear and tear
- Better RF performance
- No mechanical handovers required

Perfectly fitted for ViL testbed mounting:

- Reduced amount of RF connections
- Reliable due to vibration robust design

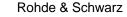
Precise and repeatable

96 TX antennas guarantee a precise and repeatable azimuth simulation without the need of physical movement:

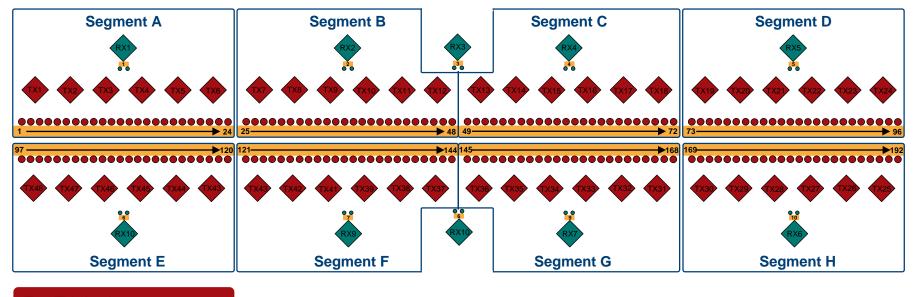
- High precision
- Great repeatability
- High resolution

Several Frontends can be stacked to simulate up to 360° of radar environment.

- Highly flexible and ready for expansion
- Radar FOV of several sensors can be simulated by one or multiple frontends



Clean RF - no reflections from FE


The PCB antennas have a much lower RCS as the standard gain horns used in other systems. Together with the QAT-B50 shielding system, a shielded RF environment can be guaranteed

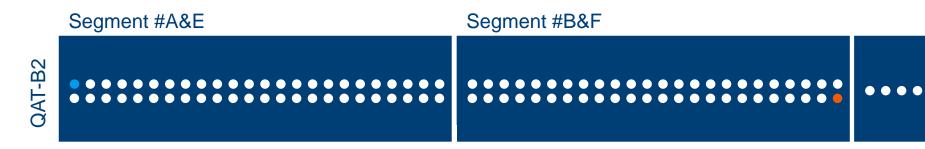
- Reliable operation
- Reduced influence of other T&M equipment
- No testbed mode required for the radar

R&S[®]QAT100 QAT-B11 / -B2 ANTENNA NUMBERING

TeraTX circuit

TeraRX circuit

Antenna numbering drivers



R&S®QAT100 QAT-B11 / -B2 SIMULATION

Segment #A

Segment #B

0	5	
•••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •	••••

R&S[®]QAT100 QAT-B21 ANTENNA NUMBERING

Segment A	Segment B	Segment C	Segment D
	••••••	•••••••••••••••••	
1 24 RX1 RX2 RX3 RX4 RX5 RX6		49 72 RX13 RX14 R154 RX16 RX17 RX18	73

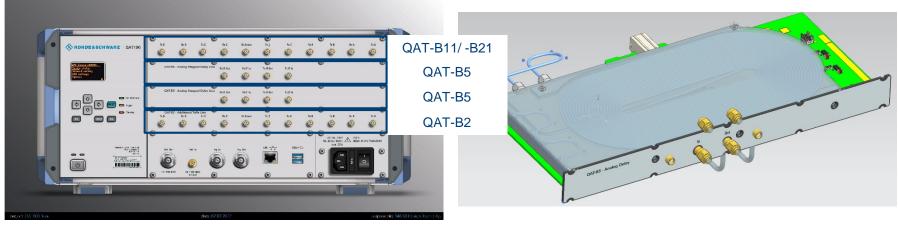
TeraTX circuit

TeraRX circuit

Antenna numbering drivers

Rohde & Schwarz

R&S[®]QAT100 QAT-B21 SIMULATION

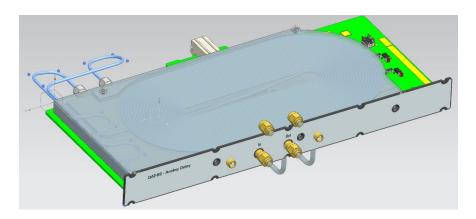

Seament #A

Segment #B

••••••	•••••••	••••

- ► Segment mode available
- Intersecting targets at certain positions

R&S[®]QAT100 EQUIPPED WITH QAT-B5 ANALOG STEPPED DELAY LINE



R&S®QAT100 with QAT-B11, QAT-B2 and 2x QAT-B5

R&S®QAT-B5 ASDL module

R&S[®]QAT100 EQUIPPED WITH QAT-B5 ANALOG STEPPED DELAY LINE

- Enables QAT100 "standalone-mode"
- Simulates echoes from ~2m ... 13m (including 0.5m airgap)
- ► Extendable with fibre optic cables
- Supported step size 0.1m
- ► No Doppler simulation possible

R&S[®]QAT-B5 ASDL module

Rohde & Schwarz

FIELD-OF-VIEW & ANGULAR RESOLUTION

3,7 mm 351 mm

The field-of-view (FOV) and angular resolution achievable with the R&S[®]QAT100 are dependent on the setup but can be calculated as follows:

Field-of-view:

Angular resolution:

$$\alpha = 2 \cdot \tan^{-1}\left(\frac{351mm}{d}\right) \qquad \Delta \alpha = \tan^{-1}\left(\frac{3,7mm}{d}\right)$$

Distance (d)	Field-of-view (α)	resolution ($\Delta \alpha$)
500 mm	38.7°	0.42°
700 mm	28.1°	0.30°
1000 mm	19.9°	0.21°
1500 mm	13.34°	0.14°
2100 mm	10.0°	0.10°

R&S[®]QAT100 ADVANCED ANTENNA ARRAY QAT-Z50 SHIELDING SYSTEM

QAT-Z50 shielding system

- 50 cm long, 10° opening
- Direct mounting kit for QAT

Challenges

- Car mounting kit respectively
 QAT stand in front of car
- Customization based on e.g.
 CAD required

R&S®QAT100 FEATURES

Azimuth and elevation simulation without mechanical movement & immune to vibration

 $\rightarrow \bullet \leftarrow$

Extremely short distances precise and repeatable

4GHz instantaneous bandwidth across scalable FOV

R&S AUTOMOTIVE RADAR TEST SYSTEM R&S[®]QAT100 + R&S[®]AREG800A

Azimuth and elevation simulation without mechanical movement & immune to vibration

 $\rightarrow \bullet \leftarrow$

Extremely short distances precise and repeatable

 \mathcal{M}

4GHz instantaneous bandwidth across scalable FOV

Multiple independent dynamic objects

HiL interface via Open Simulation Interface

Performance optimized system

AGENDA

- Automotive radar technology overview
- Radar object simulation test challenges
- The possibilities of benchtop radar sensor testing
- Practical demonstration
- Summary and learnings

AGENDA

- Automotive radar technology overview
- Radar object simulation test challenges
- The possibilities of benchtop radar sensor testing
- Practical demonstration
- Summary and learnings

SUMMARY AND LEARNINGS

- ► Realization of higher levels of ADAS is driving up number and complexity of automotive radars
 - Higher bandwidth, complex modulation, MIMO, virtual aperture
- Need for complex moving object scenarios to be emulated in a lab environment but also for functional verification testing
- ► New possibilities for benchtop testing using standalone electronically-steered antenna arrays
 - Expandable to 360^o complex traffic scenario test systems for sensor development, HiL and ViL with addition of radar echo generator
- ► Future increased testing requirements at functional and ADAS application level

Find out more www.rohde-schwarz.com/automotive/radar

Automotive TEST IT. TRUST IT.

Find out more www.rohde-schwarz.com/automotive/radar

ROHDE&SCHWARZ

Make ideas real

