AGING AND IN-CIRCUIT CHARACTERIZATION OF ALUMINUM ELECTROLYTIC CAPACITORS

Marcus Sonst Application Engineer Power Management

ROHDE&SCHWARZ

Make ideas real

CONTENT

- Aluminum Electrolytic Capacitors In AC-DC Power Converter
- Common Circuits For Offline AC-DC Power Supplies
- Capacitance Calculation And Equivalent Series Resistance Fundamentals
- Basic and Extended Circuit Simulation
- Measurement Hardware
- Demonstration
- ► In-Circuit Measurement And Results Capacitance, ESR and Current Ripple
- Lifetime Prediction
- Conclusion

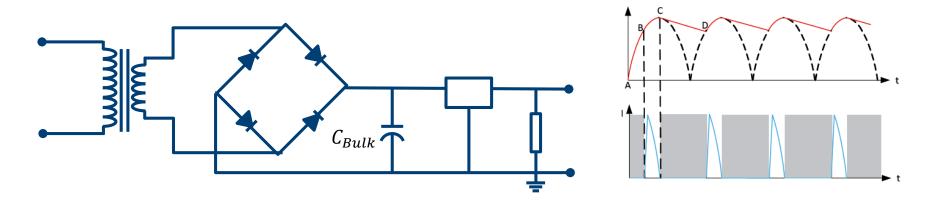
Introduction

AL-ELECTROLYTIC CAPACITORS IN AC-DC POWER SUPPLIES

- ► It Is Still The Key Component In Power Supplies For Several Reasons
 - Provide Large Capacitance At Higher Voltage
 - Very Price Attractive
 - Volume Per µF Is Very Good

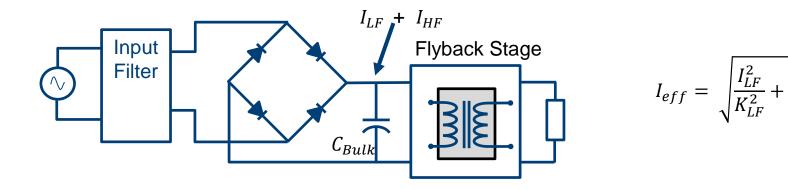
► Aluminum Electrolytic Capacitor Is The Relevant Component Of The Overall PSU Life Time!!!!

Rohde & Schwarz


AGING EFFECTS OF AL-ELECTROLYTIC CAPACITOR

- ► Impacts On Aging Of Aluminum Electrolytic Capacitors Are:
 - Temperature
 - Loss Of Electrolytic
 - Leakage Current >> Oxide Degradation
 - Ripple Current
 - Local Heating >> Loss Of Electrolytic
 - Voltage
 - Leakage Current

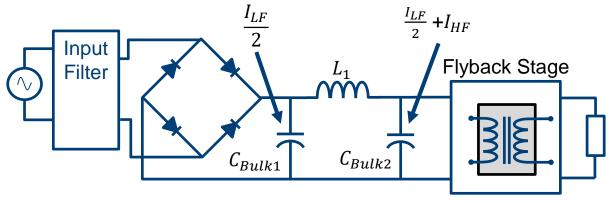
Loss Of Capacitance And An Increasing Equivalent Series Resistors (ESR)


LINEAR POWER SUPPLY CIRCUIT

- They Still Need A Storage Element To Smooth The Rectified Pulsating Voltage (Low frequency) After The Bridge Rectifier
- Use Of The Large Bulk Capacitor Based On Aluminum Electrolytic Technology Is The Preferred Choice

SWITCHING-MODE POWER SUPPLY CIRCUIT

- In Many Applications, Overall Efficiency Requires The Use Of Power Supplies Based on SMPS principle
 - The Bulk Capacitor Is Still Required For Smoothing The Pulsating DC Voltage
 - An Additional HF Current Component Has To Be Considered


The Maximum Current Ripple Is Typically Defined At Line Frequency (100Hz)

Aging And In-Circuit Characterization Of Aluminum Electrolytic Capacitors

 $\frac{I_{HF}^2}{K_{HF}^2}$

EMI OPTIMIZED POWER SUPPLY CIRCUIT

- ► A Small Change In The Previous Setup May Solve EMI Challenges
 - An Additional Bulk Capacitor And Filter Inductor Is Used To Create A PI Filter
 - Low Frequency Content Will Flow In Both Capacitors
 - Low And High Frequency Content Will Flow Only In C_{bulk2}

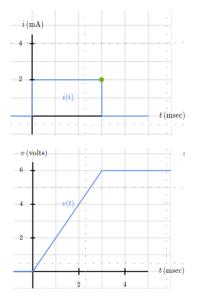
Lifetime Of Bulk Capacitors Are Different!!

Introduction

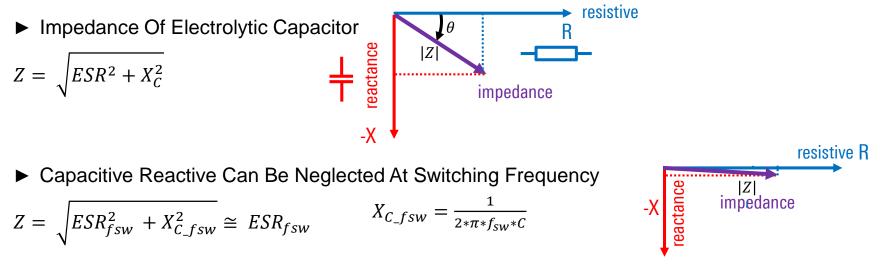
HOW TO CALCULATE CAPACITANCE FROM MEASURED CURRENT AND VOLTAGE

Basic Math Fundamentals

The Integral Of The Current Over Time Can Be Expressed As The Charge


$$Q = \int_{t1}^{t2} i(t)dt \, [As]$$

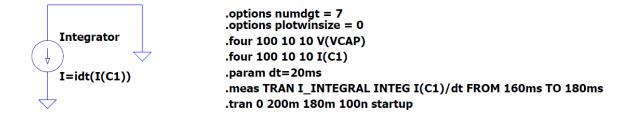
The Voltage Across The Capacitor Is Expressed By The Integral And The Scale Factor C (Capacitance)

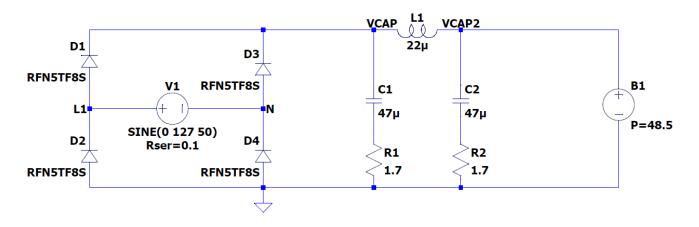

$$u(t) = \frac{1}{C} * \int_{t1}^{t2} i(t)dt$$

The Capacitance Can Be Expressed Using The Formulas Above

 $C = \frac{\Delta Q}{\Delta U}$

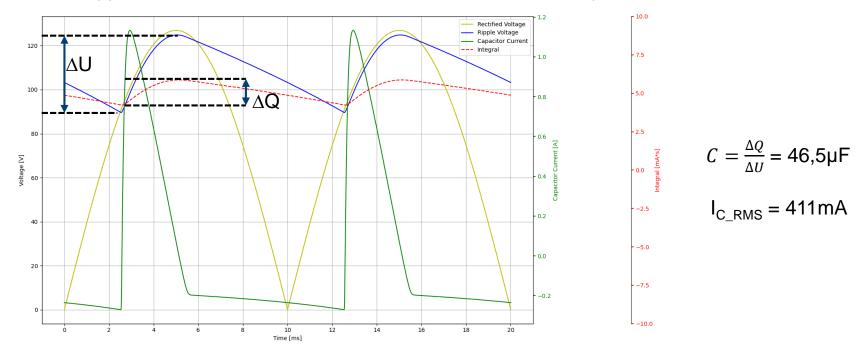
ESR CALCULATION AT SWITCHING FREQUENCY

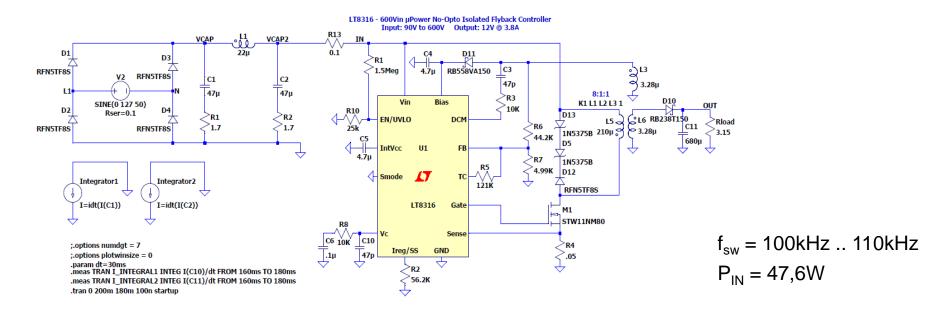



► ESR Can Be Calculated From Voltage And Current Switching Peak To Peak

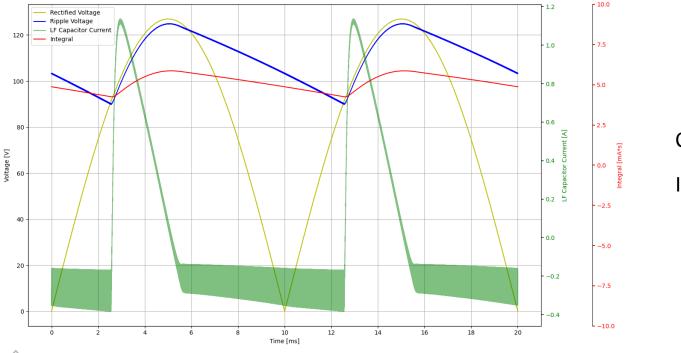
$$Z = \frac{U_{C_{fsw}}}{I_{C_{fsw}}} = \frac{U_{C_{fsw}}}{I_{C_{fsw}}} = \frac{U_{C_{fsw_{peak}}}}{I_{C_{fsw_{peak}}}}$$

Rohde & Schwarz


BASIC CIRCUIT SIMULATION – LF RIPPLE

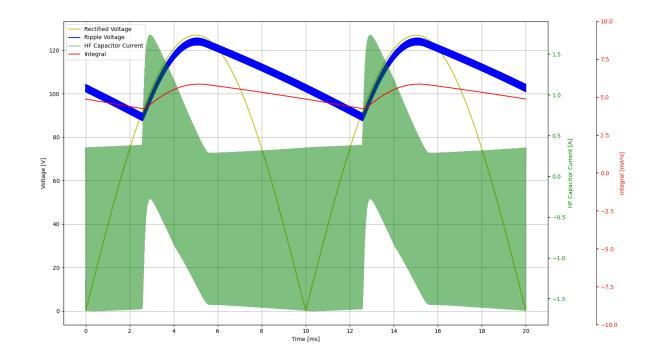

SIMULATION RESULTS

► LF Ripple Simulation Is Used To Derive RMS Current And Capacitance


EXTENDED SIMULATION CIRCUIT

► Contribution Of The Flyback Converter Has To Be Taken Into Account For Lifetime Calculation

SIMULATION RESULTS @ LF CAPACITOR


► LF Ripple Simulation To Derive RMS Current And Capacitance

$$C_{LF} = 46,3\mu F$$

 $I_{C_{RMS}} = 415mA$

Rohde & Schwarz

SIMULATION RESULTS @ HF CAPACITOR

$$C_{HF} = 46,4\mu F$$

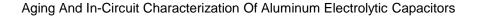
 $I_{RMS_Effective} = 741mA$
 $I_{RMS HF} = 688 mA$

ESR ESTIMATION BASED ON SIMULATION DATA

- Digital FIR Filter (Band Pass Filter) Can Be Used To Measure Peak To Peak At Switching Frequency
- ► Filter Design Is Based On Matlab Filter Designer

► ESR Calculation Within Matlab

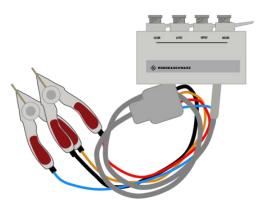
$$ESR_{fsw} = \frac{U_{C_{fsw_peak}}}{I_{C_{fsw_peak}}} = \frac{4.133 V}{2.435A} = 1.697\Omega$$



Very Close To The Simulation Model!!

PROBING

- What Kind Of Hardware Is Required To Derive The Capacitance, Ripple Current And ESR Value Within The Circuit Operation.
 - High Voltage Differential Probe
 - R&S ZHD07 Offset Capability And Sufficient Bandwidth
 - Current Probe
 - Current Clamp Probe or Rogowski Probe
 - R&S RT-ZC20B Offers Very Good Bandwidth
 - Rogowski Probe Is easy To
 Attach To The Circuit (AC Current Only)



LCR-METER

- ► It Was Used To Validate The In-Circuit Measurements
 - R&S LCX100/LCX200 LCR Meter Provides High Accuracy
 - Basic Accuracy Up To 0.05%
 - It provides Many Different Impedance Measurement Functions
 - ESR, ESL And Capacitance Is Needed

LCR-METER DEMONSTRATION

OSCILLOSCOPE

- ► An Device With The Following Characteristic Is Essential:
 - Bandwidth Of At Least 1GHz Is Required
 - Use Of Customized Digital Filter
 - Integral Math Function Should Be Used To Calculate Q Charge
 - Measurement Function Like RMS, Peak to Peak, etc.
 - Powerful Curser Setting Supports The User To Extract The Capacitance

The RTO6 Is The Perfect Choice To Perform The Challenging Task

CAPACITANCE EVALUATION PART I

Capacitance Measurement At Line Frequency

HD Mode with BW Limit 10kHz (16Bit)

$$C = \frac{\Delta Q}{\Delta U} = \frac{603 \ \mu A * s}{13.24 \ V} = 45,5 \mu F$$

DUT Parameter: 230VAC @ lout = 20V/2A

CAPACITANCE EVALUATION PART II

► A Combination Of Low and High Frequency Content Is Present

HD Mode With BW Limit 10kHz (16Bit) (Switching Frequency Rejection)

$$C = \frac{\Delta Q}{\Delta U} = \frac{625 \,\mu A * s}{13,4 \,V} = 46,7 \,\mu F$$

DUT 230VAC @ lout = 20V/2A

RIPPLE CURRENT MEASUREMENT PART1

► Ripple Current Measurement At Line Frequency

HD Mode with BW Limit 50kH±z((165Bi))

 $I_{RMS_LF} = 254 mA$ $I_{RMS_Total} = 255 mA$

DUT 230VAC @ lout = 20V/2A

RIPPLE CURRENT MEASUREMENT PART II

► Ripple Current Measurement At Line Frequency, Switching Ripple And The Total Ripple

Aging And In-Circuit Characterization Of Aluminum Electrolytic Capacitors

HD Mode with BW

Limit 50kHz((166E6i))

 $I_{RMS_{LF}} = 265 \text{ mA}$

 $I_{RMS_{Total}} = 540 \text{ mA}$

 $I_{RMS_{HF}} = 470 \text{ mA}$

230VAC @ lout = 20V/2A

DUT

ESR IN-CIRCUIT MEASUREMENT @ SWITCHING FREQUENCY

► Ripple Voltage And Current Measurement At Switching Frequency

Results (@25°) $U_{PP} = 1,02 V$ $I_{PP} = 1,85 \text{ A}$ ESR = 551 mO $F_{sw} = 285 \text{ kHz}$ Bandpassfilter (FIR) $F_{stop1} = 13 \text{ kHz}$ $F_{pass1} = 125 \text{ kHz}$ $F_{pass2} = 11 \text{ MHz}$ $F_{stop2} = 11,25 \text{ MHz}$

CAPACITANCE AND ESR COMPARISON

	In-Circuit Measurement		LCR-Bridge Measurement		Failure [%]	
	LF-Cap @ 100Hz	HF-Cap @ 100Hz	LF-Cap @ 1kHz	HF-Cap @ 1kHz	LF-Cap	HF-Cap
Capacitance [µF]	45,5	46,7	43,4	43,8	4,6	6,2
Capacitance [µF] (2000 h)	44,0	43,1	41,3	41,5	6,1	3,7
ESR [Ω] @ 285 kHz	Х	0,55	0,710	0,628	Х	-13
ESR _{2000h} [Ω] @ 285 kHz	Х	2,91	4,049	3,619	Х	-24

RIPPLE CURRENT AND TEMPERATURE RESULTS

	Current Type [mA]	In-circuit Measurement		T _{core} [°C]		Τ _a [°C]
Position		LF-Cap	HF-Cap	LF- Cap	HF-Cap	
New Capacitor	I _{RMS_Total}	255	540	39,9	39,9 42,2	25,6
	I _{RMS_HF}	Х	470			
	I _{RMS_LF}	254	265			

LIFETIME CALCULATION

Based On Core Temperature Measurement

Lifetime Calculation (Law of Arrhenius)

$$L_{\chi} = L_0 * 2^{\left[\frac{T_0 - T_a}{10}\right]}$$

$$L_0 = 10000h$$

$$T_0 = 105^{\circ}C$$

Lifetime Calculation With New Device $L_{x_LF} = 911\ 392\ h$ $L_{x_HF} = 777\ 084\ h$

Lifetime Calculation With Accelerated Aging

 $L_{x_LF} = 530\ 764\ h$ $L_{x_HF} = 458\ 865\ h$

Most Accurate Calculation But It Requires A Built-In Thermocouple Element

LIFETIME ESTIMATION

Based On Ripple Current Measurement

Current Ripple Including Frequency Multiplier

$I_{eff} = \sqrt{\frac{I_L^2}{K_L^2}}$	$\frac{I_F}{L_F} + \frac{I_{HF}^2}{K_{HI}^2}$	I _{ef}	f_LF_Cap ⁼ ⁼ _HF_Cap ⁼	= 510mA = 756 mA	$\Delta T = I_{Rated}$
$K_{LF} = 0,5$ $K_{HF} = 1$					K _{Ripp} ΔT _{Max}
Frequency [Hz]	120	1000	10000	≥ 100000	$L_x =$
Multiplier	0.50	0.80	0.85	1.0	$T_0 = 1$

Temperature Rise And Lifetime Estimation

$$\Delta T = \Delta T_{max} * \left(\frac{I_{eff}^2}{I_{Rated}^2}\right)$$

$$L_{Rated} = 1050 \ mA$$

$$K_{Ripple} = 2^{\left[\frac{\Delta T_{max} - \Delta T}{5}\right]}$$

$$\Delta T_{Max} = 5K$$

$$L_x = L_0 * 2^{\left[\frac{T_0 - T_a}{10}\right]} * K_{Ripple}$$

$$L_x = 105^{\circ}C$$

$$\Delta T_{LF} = 1,2 \ K$$

$$\Delta T_{HF} = 2,6 \ K$$

$$K_{Ripple_LF} = 1,693$$

$$K_{Ripple_HF} = 1,454$$

$$L_{x_HF} = 1,454$$

40°C Should Be Considered For Ta, If The Ambient Temperature Is Below 40°C

Rohde & Schwarz

CONCLUSION

- Smart Circuit Simulation Will Provide The First Insight Of Key Values But Cannot Avoid Real Measurements
- In-Circuit Measurement Supports The Designer With RMS Ripple Current Measurement To Estimate Lifetime Of An Capacitor In An Easy Way But Is Limited In Accuracy
- A Core Temperature Measurement Of The Capacitors Operating In The Application Provides Best Accuracy But Requires More Effort
- ► In-Circuit Measurement Provide Capacitance and ESR Values Within the Application
- ► LCR-Bridge Measurement Provides Highest Accuracy For Capacitance And ESR Measurements
- Lifetime Calculation Of Aluminum Electrolytic Capacitor Is Essential To Estimate The Overall Power Converter Lifetime

Rohde & Schwarz

Find out more
www.rohde-schwarz.com/oscilloscopes

www.rohde-schwarz.com/LCX

ROHDE&SCHWARZ

Make ideas real

