

WBG Products Validation by Double Pulse Test

Aya Chan Marketing of WBG Products 2023/02/16

Version 1.0

This presentation contains Diodes proprietary and confidential information

www.diodes.com

Company Profile

Diodes delivers high-quality (discrete, analog, and mixed signal) semiconductor products to the world's leading companies in the automotive, industrial, computing, consumer electronics, and communications markets

Vision: Profitability Growth to Maximize Shareholder Value

Our Core Values: Integrity, Commitment, Innovation

Global Organization

- Headquartered in Plano, TX; 32 locations globally
- Manufacturing in US, UK, Germany, China, and Taiwan

Products

ANALOG | DISCRETE LOGIC | MIXED-SIGNAL

PERICOM

20 35

00008

83

Automotive Applications Driving Growth

Focus Applications:

Connected Driving

- ADAS (Advanced Driver Assistance Systems)
- Telematics
- Infotainment Systems

Comfort, Style, and Safety

- Lighting
 - Migration to LED and intelligent illumination
- BLDC motor control
 - Migration from Brushed to Brushless DC Motors

Electrification/Powertrain

- Conventional Powertrain → Hybrid → Electrification
- Power Module Inverter for EV motor
- Battery management
 - Move to 48V battery

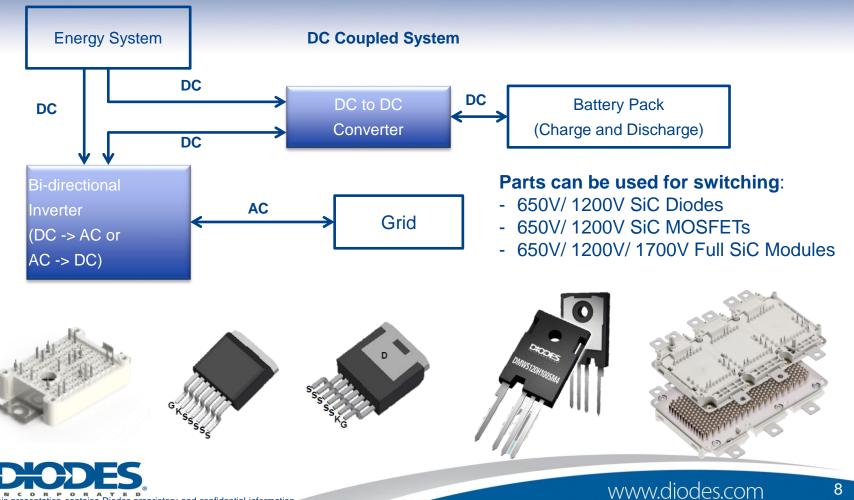
Automotive Revenue Growth

Year

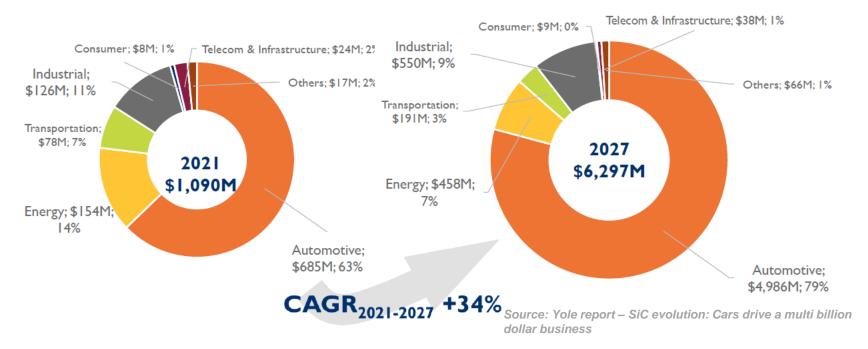
Our Sustainability Commitment

We view sustainability as a competitive advantage and have adopted a sustainability-oriented approach to assess and address related risks that may influence our operational activities, business results, and financial performance.

- Key focus areas regularly reviewed by our Board of Directors
- Instituted a cross-functional Sustainability Steering Team to address the sustainability related risks and opportunities
- The Sustainability Steering Team provides periodic updates to the Board of Directors



What Will Our Products Be....?


SiC Applications

This presentation contains Diodes proprietary and confidential information

Power SiC Device Market (\$M)

- Split by Application:

Design Products Fit Requirement

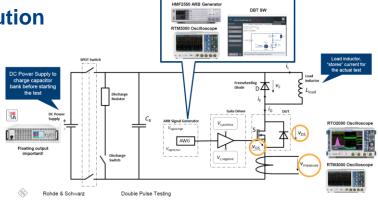
Power Components

Sub-Systems

Motors (Reference: Tesla Motor)

Characteristic		Symbol	Value	Unit	
Total Power Dissipation (Note 5)	T _C = +25°C		208	w	
	Tc = +100°C	PD	83	VV	
Thermal Resistance, Junction to Ambient (Note 6)		Reja	25.5	°C/W	
Thermal Resistance, Junction to Case (Note 5)		Rajc	0.6	C/W	
Operating and Storage Temperature Range		TJ, TSTG	-55 to +150	°C	

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 8)		~				
Drain-Source Breakdown Voltage	BVDSS	1200	14	-	V	Vgs = 0V, Ip = 100µA
Zero Gate Voltage Drain Current	IDSS	-	U -	100	μA	V _{DS} = 1200V, V _{GS} = 0V
Gate-Source Leakage	IGSS	- 27	-	±200	nA	VGS = +15/-4V, VDS = 0V
ON CHARACTERISTICS (Note 8)	6 1	-				
Gate Threshold Voltage	VGS(TH)	1.8	2.5	3.5	V	VDS = VGS, ID = 5mA
Static Drain-Source On-Resistance	RDS(ON)		80	100	mΩ	VGS = 15V, ID = 20A
Diode Forward Voltage	VsD	-	4.06	-	V	VGS = -4V, IS = 10A
Transconductance		-	3.8	_	S	Vps = 20V, lp = 20A


Name	Details		
Measurements according to IEC 60747-8 and IEC 60747-9	 Turn-on and turn-off delay times Rise and fall time Turn-on energy and Turn-off energy Reverse recovery time Reverse recovery time Reverse recovery charge Reverse recovery energy Reverse recovery current 		
Gate charge	 Gate charge Plateau charge Total charge V_g vs. Q_g 		
Extraction of DUT stray inductance			
dv/dt and di/dt			
(Dynamic on-resistance) according to JC70 standards			
Switching locus	 I_d and V_{ds} vs. t I_g and V_{gs} vs. t Energy vs. t I_d vs V_{ds} (switching locus) 		

Dynamic Parameters Measurement on SiC Devices

- The methodology and theory of dynamic characteristics measurement of SiC is similar with that of Si semiconductors.
- Double pulse test is the preferred test method to measure the switching parameters and evaluate the dynamic behaviors of power devices.
- But fast switching time of SiC power components increase the number of effects influencing the measurement.
 - Stray inductances of DC-link
 - Smaller losses => high measurement resolution
 - Bandwidth voltage and current probes

• ...

Theory of Double Pulse Test

- Double pulse test is a tool which enables a power switch to be turned on and off at different current levels as shown in figure 1.

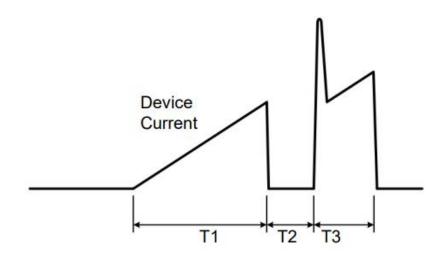
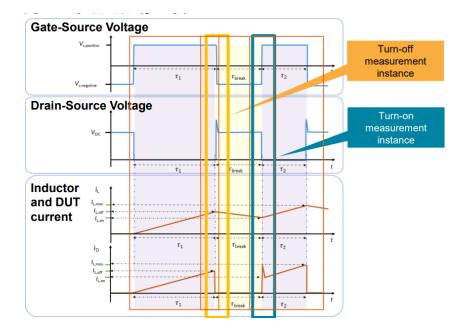
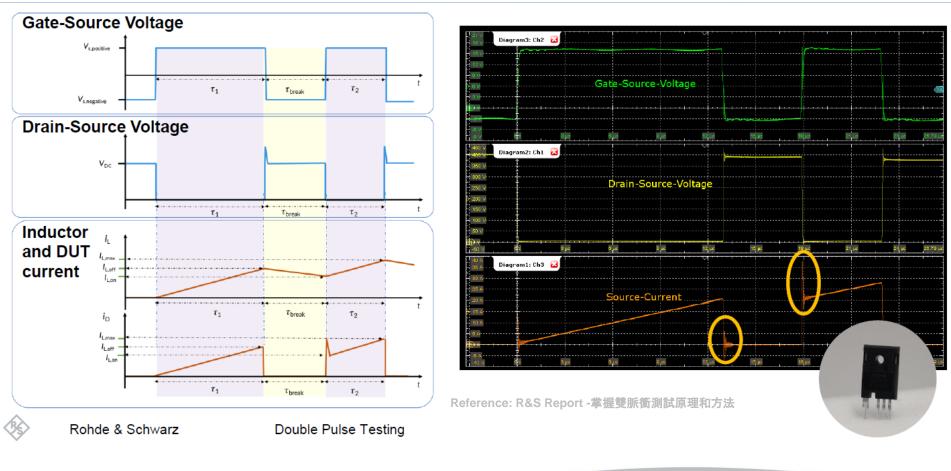
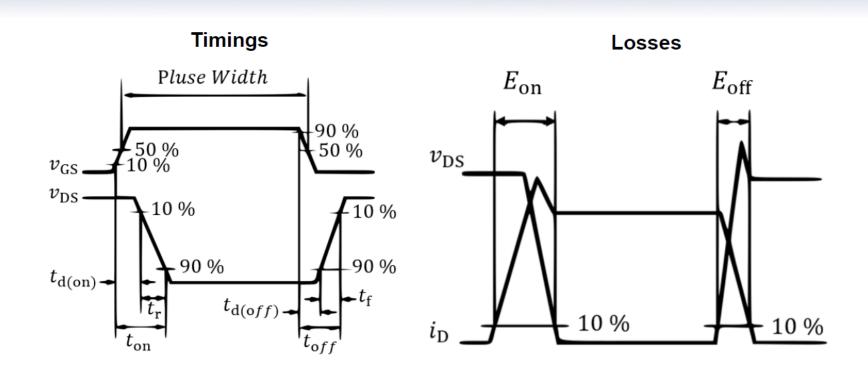



Figure 1: Double pulse waveform


Why Not Single Pulse?

✓ In most power devices, inductive load is bigger. When DUT turn off, inductive current continue to flow, causing diode to turn ON.

 Turning ON the DUT at time stage, the diode will have a reverse recovery process. This is unavailable if we only do a single pulse test.



DPT Wave Form

Turn-on And Turn-off Timing And Energy

Definition from IEC 60747-8 for MOSFET

Conclusion

- From design point of view, double pulse test helps power component designers to get relevant data of switching.
- With the dynamic data, components designers can get the sweet point between reliability and efficiency.
- On SiC products, the conduction and switching loss is much smaller. It is important to have a test system to ensure measurement accuracy.

Thank you

This presentation contains Diodes proprietary and confidential information

