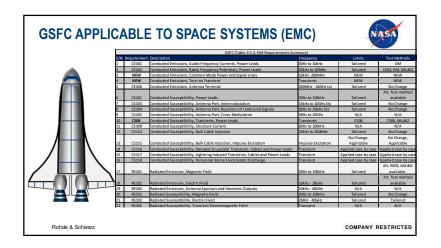
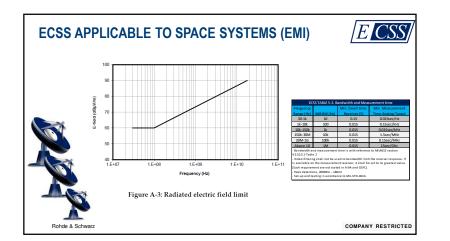
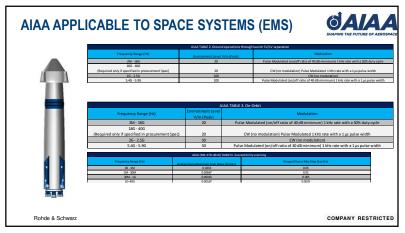
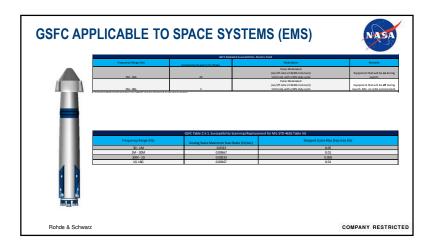

PURPOSE

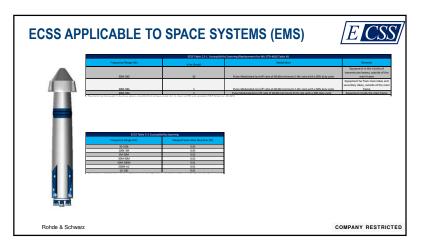

- Ensuring space systems system level electromagnetic compatibility (EMC), for all Intersystem and Intra-system including all electromagnetic environmental effects.
- Guidelines for environmental verification programs for payloads, subsystems and components.
 Through baseline test and/or analysis and that minimum workmanship standards have been met.
- Gives guideline test levels, provides guidance in the choice of test options, and describes acceptable test and analytical methods for implementing the requirements.

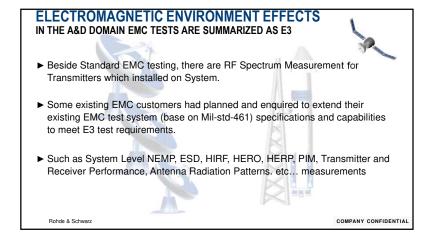
Rohde & Schwarz

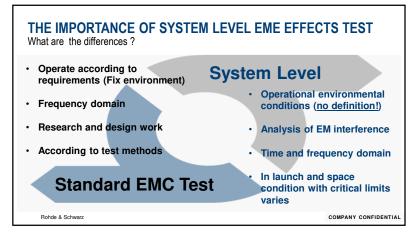

COMPANY RESTRICTED

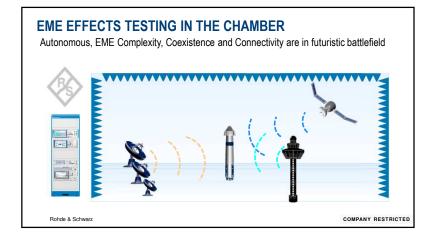












E3-MARGIN

1. Establish the external threat environment against which the system is required to demonstrate compliance of immunity.

2.Identify the system electrical and electronic equipment performing functions required for operation during application of the external threat.

3. Establish the internal environment caused by external electromagnetic effects for each installed equipment.

4.Design the system and equipment protection.

5. Verify the protection adequacy, typically require an overall margin of 6 dB (16.5dB for EIDs).

Rohde & Schwarz

COMPANY CONFIDENTIAL

Demystifying EMC 2023 virtual conference SATELLITE EMC TESTING

Thank you for listening.

For any questions please contact us via chat.

ROHDE & SCHWARZ Make ideas real Progress in EMC standardization CISPR 16-1-1

Jens Medler

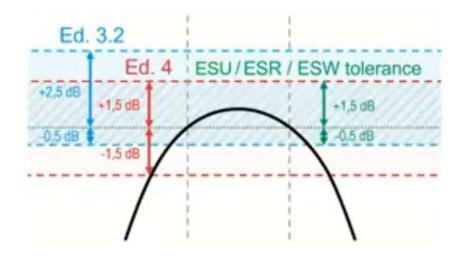
ROHDE&SCHWARZ

Make ideas real

CISPR | International special committee on radio interference Comité international spécial des perturbations radioélectriques

- **I** Technical committee within the International Electrotechnical Commission (IEC)
- The committee is constituted of 7 sub-committees that fulfil both product (vertical) and basic (horizontal) standardisation roles
- CISPR was established in 1933 and had its first meeting in June 1934 in Paris, with representatives of 6 national committees of the IEC (Belgium, The Netherlands, Luxembourg, France, Germany and UK)
- I Today CISPR one of 110 technical committees of IEC
- Members of CISPR are 41 National Committees (24 participate / 17 observer), EBU, ETSI, CIGRE, IARU and both ITU-R and ITU-T

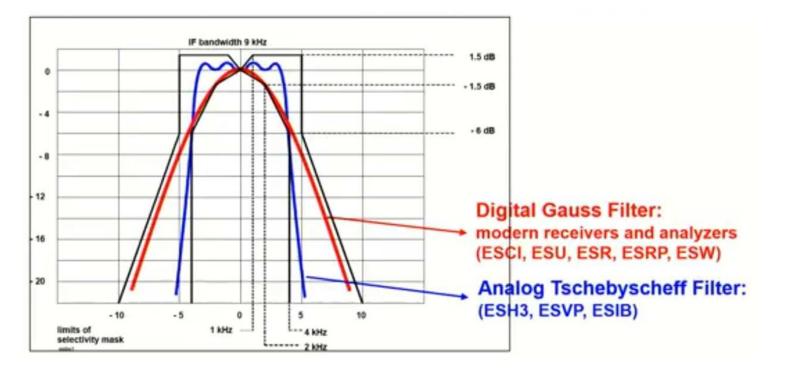
WAS ESTABLISHED TO CONSIDER THE PROTECTION OF RADIO RECEPTION FROM INTERFERENCE



Amendment A1: 2002 to CISPR 16-1:1999 (2nd Edition)

- Adds The requirements for the linear average detector with meter time constant
- R&S measuring receivers are using the acronym "CAV" (spell "CISPR-AV") in contract to "AV" for the true average detector.
- CAV detector need to be used for testing against AV limits in CISPR standard!

Pulse amplitude relationship for average detector

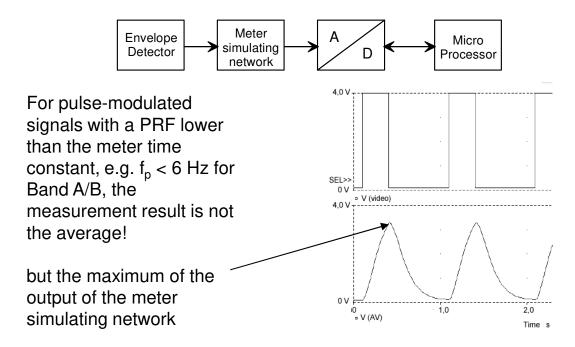

A tolerance of 1.5dB/-1.5dB is permitted

R&S® ESW, R&S® ESR and R&S® ESU are calibrated to a tolerance of -0.5dB/+1.5dB to comply with both CISPR 16-1-1:2004 (Ed.3.2) and CISPR 16-1-1:2015 (Ed.4) as common tolerance of both requirements.

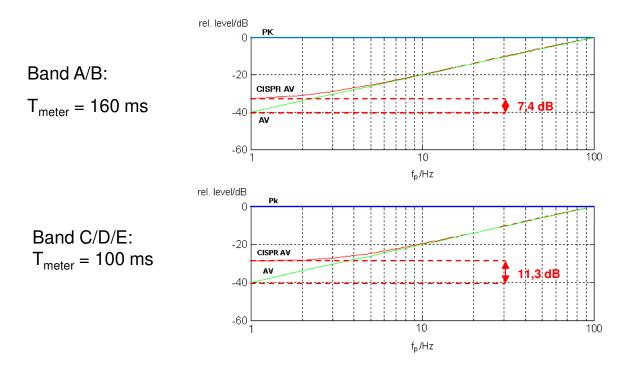
CISPR 16 – NEW REQUIREMENTS IN ED.4/ED.5

> Justification for the symmetric tolerance – use of Gaussian filters

37 Rohde & Schwarz June 2022 CISPR News - All Emission Standards


CISPR 16 – NEW REQUIREMENTS IN ED.5

Publication status and Applicability


CISPR 16-1-1:2014 ED3.2	CISPR 16-1-1:2015 ED4	CISPR 16-1-1:2019 ED5
CISPR 11:2015 (ED6)	CISPR 14:2016 (ED6) CISPR 14:2020 (ED7)	IEC 61000-6-3:2020
CISPR 12:2007 (ED6) refers to 16-1-1:2006	CISPR 15:2018 (ED9)	IEC 61000-6-8:2020
	CISPR 25:2016 (ED4)	CISPR 25:2021 (ED5)
ANSI C63.2:2016 / FCC	CISPR 32:2019 (ED2.1)	
	CISPR 36:2020 (ED1)	
	IEC 61000-6-4:2018	

Linear CISPR-Average detector with meter time constant

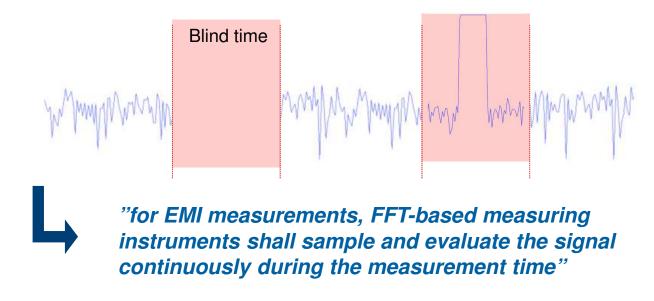
Band A/B = 160 ms, Band C/D/E = 100 ms)

Example for pulse width = 10 ms, measurement time $T_{meas} > 10 / f_p$

⁴⁰ Rohde & Schwarz June 2022 CISPR News - All Emission Standards

CISPR 16 – FFT-BASED MEASURING RECEIVERS

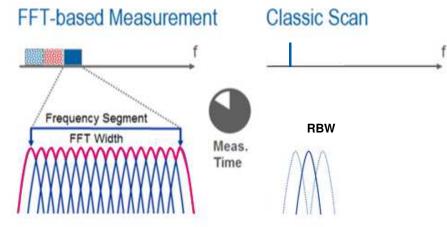
More Speed with Time-Domain Scan



	R&S ESW		
Measurement Times	Stepped Scan	Auto TDS (Full compliant)	Fast TDS (PRF 10 Hz)
150 kHz – 30 MHz 9 kHz, Peak, 100 ms	12:35 min	0.11 s	0.11 s
150 kHz – 30 MHz 9 kHz, QP + CAV , 1 s	~ 3.8 h	2 s	2 s
30 MHz – 1000 MHz 120 kHz, Peak, 10 ms	4:15 min	0.38 s	0.38 s
30 MHz – 1000 MHz 120 kHz, QP + CAV , 1 s	~ 10 h	50 s	40 s

CISPR 16 – FFT-BASED MEASURING RECEIVERS

Amendment 1:2010-06 to CISPR 16-1-1 (3rd Ed.)


- ► With traditional instruments there is a blind time between capturing the signal
- Information might be and will be overlooked

CISPR 16 – FFT-BASED MEASURING RECEIVERS

Motivation for FFT-based measurement instrumentation

- I More Speed FFT-based receivers are measuring spectral segments much wider than the resolution bandwidth during the measurement time by parallel calculation at several frequencies
- I More Reliable FFT allows application of longer measurement times, e.g. for measuring intermittent signals
- I More Insight FFT makes enhanced measurement functions like scan spectrogram and persistence display applicable

Ultra-fast scan time for entire frequency range

Long scan time for entire frequency range