Webinar

ADVANCED EYE ANALYSIS GET TO YOUR RESULTS FASTER

Guido Schulze, Product Manager Oscilloscopes Alessandro Cappelletti, Application Engineer Oscilloscopes

ROHDE&SCHWARZ

Make ideas real

OUTLINE

- ► What can go wrong on Highspeed Interfaces
- ► Eye Diagram Basics
- ► Traditional Eye Analysis Approaches
- ► New HW-CDR Approach
- ► From Quick "AHA" to the Details
- ► Live Demonstration
- ► Summary

HIGHSPEED DIGITAL INTERFACES

- Signal integrity challenges due to increasing data rates
- Interference issues due to increasing level of integration

Signal Integrity analysis: T&M needs to collect statistical data fast.

HIGH SPEED DIGITAL INTERFACES WHAT COULD POSSIBLY GO WRONG?

Common signal integrity problems:

- Channel-related effects
 - Signal loss/attenuation
 - Reflections due to impedance mismatches
 - Ringing (overshoot/undershoot)
 - Crosstalk
- Transmitter effects
 - Rise/fall imbalance
 - Timing jitter
- External sources (can be intermittent)
 - EMI within or from outside the components in the system
 - Noise from power and distribution networks
 - Interferer from other functional cores
- 4 Rohde & Schwarz

Advanced Eye Analysis - Get your result faster

HIGH SPEED DIGITAL INTERFACES Dedicated Tests for Verification & Debugging

Eye Diagram

- Fast update rate for statistical confidence
- Clock-Data-Recovery (CDR)
- Mask tests, Histogram

Jitter & Noise Analysis

• Break-down of jitter and noise into individual components for characterization & debugging

Automated Compliance Tests

• Verify compliance of the physical layer to interface standards and report results

EYE DIAGRAM BASICS

EYE DIAGRAM INTRODUCTION

- Graphical tool for the evaluation of the quality and integrity of data signals
- Superposition of multiple signal waveform segments aligned to well-defined reference time instants
 - Waveform segments commonly correspond to a data symbol
 - Reference clock provides timing information for alignment (e.g. symbol start instant)

Superposition of bit sequences form the eye diagram

Eye diagram with color-coded frequency

REFERENCE CLOCK GENERATION FOR EYE DIAGRAMS CLOCK-DATA-RECOVERY

- Timing reference can be from a reference clock (parallel clock signal) or from the data signal itself (embedded clock signal)
- ► Clock data recovery is typically uses a Phase Locked Loop (PLL) or Delay Locked Loop (DLL)

INFORMATION CONTAINED IN AN EYE DIAGRAM

- Timing jitter: peak to peak, standard deviation
- ► Noise: peak to peak, standard deviation
- Eye width: the minimum time interval over which no signal transition will occur
- Eye height: the minimum amplitude over which the signal level occur
- Eye parameters are based on statistics and require large sample size for repeatable measurements

TRADITIONAL EYE DIAGRAM APPROACHES

"LIVE EYE": CONTINUED ACQUISITION

- Continued acquisition of waveforms with <u>short</u> acquisition time
 - Trigger: "Edge", rise/fall
 - Acquisition time: ~2 UI
 - Persistent display mode to form a Data Eye
- Application:
 - Long-term monitoring, interferer detection

BIT SEQUENCE: SINGLE ACQUISITION

- Acquisition of waveform with <u>long</u> acquisition time
 - Trigger: "Edge", rise
 - Acquisition time: ~1M UI
 - SW-CDR to form a Data Eye
- Application:
 - Jitter/Noise characteristic of device & channel

1 s

COMPARISON OF THE 2 APPROACHES

	"Live Eye"	Bit sequence
Application	long-term monitoringdetection of interferer	 characterization of transmitter and signal path
Pro's	- very easy setup for first glance	 CDR to analyze signal based on embedded clock conform to standards test definition
Con's	 "edge" trigger not suitable for jitter analysis cannot capture non-transitional bits 	 SW-CDR setup is more complex then "edge" trigger new CDR locking for every acquisition "wastes" acquisition memory long processing

R&S APPROACH – CDR TRIGGER IN HW

HW-BASED CLOCK-DATA-RECOVERY TRIGGER

► Eye Analysis based on Hardware implemented Clock-Data-Recovery (CDR)

- CDR is part of the Trigger circuitry
- CDR locks once and runs continuously
- CDR is applicable for both Eye approaches: Bit sequence and Individual bits ("Live Eye")

DETAILS OF CDR TRIGGER

- Source:
 - any analog channels
- ► Combinable with:
 - differential signal math and real-time deembedding
- Nominal bit rate:
 21 kbps to 16 Gbps
- Configurable BW:
 1/500 to 1/3000 of norminal bit rate
- CDR timing can be saved as math waveform

ustom USB2.0 USB 3.2 Gen 1 Displayport 1.1 Displayport 1.2 Fibre Channel 1x Fibre Channel 2x Fibre Channel 4x Fibre Channel 8x HDMI 1.2 HDMI 1.4 HDMI 2.0 PCIe Gen 1 PCIe Gen 2 SATA Gen 1 SATA Gen 2 SATA Gen 3 SAS Gen 1 SAS Gen 2 SAS Gen 3 Thunderbolt 10G VAL II

HW-CDR TRIGGER FOR "LIVE EYE"

- Options: RTP-K136/137
- ► HW-CDR up to 8/16 Gbps
 - Trigger individual bits based on embedded clock

Benefits

- Fast results due to high acquisition rate
- Continuously CDR running as time reference
- Combinable with HW implemented Histogram and Mask Test
- Combinable with Realtime Deembedding

Signal-integrity debugging:

- Fast glance on Jitter / Noise
- Long-term monitoring
- Use Mask and Histogram

1 s

HW-CDR TRIGGER FOR ADVANCED EYE ANALYSIS

- ► Options: RTP-K136/137
- ► HW-CDR up to 8/16 Gbps
 - Bit folding based on continuously running HW-CDR
- Powerful capabilities
 - HW-CDR as Math available
 - Powerful Filter & Qualify options
 - Saving of Data Eye
 - Automated eye measurements
 - Mask test w/ EyeStripe function
 - Mask test library for typical interface standards

Signal-integrity characterization:

- Based on a long bit sequence
- Transmitter output and signal path characteristic
- Use Mask and Histogram

FROM QUICK "AHA" TO THE DETAILS

ADVANCED EYE ANALYSIS EASY SETUP IN 3 STEPS

Quick start with Eye Analysis

- 1. Select Source
- 2. Hardware CDR: Select Serial Standard
- 3. Set State: On

ADVANCED EYE ANALYSIS TUNE YOUR SETUP

Advanced settings:

► Display:

- color table, persistence,
- "Eye stripe"

► Qualify:

- Gate
- Signal
- ► Filter:
 - All bits / level transition / constant level
 - Bit pattern

All bits

Level transition

Constant level

Bit pattern

EYE STRIPE

- Couples mask violations with position in waveform
- Easy navigation between violations
- Coupled zoom to investigate details
- Time-correlation to other signals possible

AUTOMATED EYE MEASUREMENTS

- 18 automated measurements
- Configure detailed measurement parameters

1	₹?	o ¥		Q	\sim	\mathbf{X}		and a	.lan	>	¢	CDR	Trigger	0V Au	Hori to 10	izontal 0 ns/	Ace 40 GSa/s	luisition Sample	RT	Info	2022-11-03
Undo	Help I	mage Autoset	Preset	Zoom	Cursor	Mask	Histogr	Measure	FFT	1/2	•		_	Sto	ор	0 s	40 kpts				± ∨
240 mV	Diagram2: Eye	21 ×	_																		
180 mV												-				Concentrate (11)					
60 mV																					
ED-V			-			-	1 1 m														
-60 mY					-									and the second			-				
-120 m¥				and the second second								Measurer	ments	-				+ + -	×	\sim	Vertical
-240 mV								_				Setup		MG1 MG	2 MG3	MG4 N	AGS MG6	MG7 MG8	QM		
-300 mY	a	60,4 p i	-120	3 pr	1	80.2 #1		-40 1 pr		ä	i			Enable						N.	Horizontal
	Meas Results	×										Plot		On						~	
		Current		Max		Min	1	Me	an	F	RMS			-Ev							Trigger
Meas Gro	oup 1 😐	244.05	2 1/	244.02		244	07 -1/	24	4.02		14 02 -	Gate		Category			Source			-FZ]-	Acquire
Eve width		132 (2 111 V	133.0	7 ns	244	3 07 nc	24	4.92 mv		133 07 r			Eye			E1 *			670	Acquire
Eve top		166.1	l mV	166.1	mV	16	6.1 mV	1	66.1 mV		166.1 m	Advanced		Statistics						1	Measure
Eve base		-166.79	€mV	-166.79	mV	-166	.79 mV	-16	6.79 mV		166.79 m			On							
Noise (RA	MS)	14.663	3 mV	14.663	mV	14.6	563 mV	14	.663 mV		4.663 m			DV -							Cursor
S/N ratio		13.5	6 dB	13.56	5 dB	1	3.56 dB		13.56 dB		13.56 d			d 8.			Gen	eral settings			
Duty cycle	e distortio	0.:	35 %	0.3	5 %		0.35 %		0.35 %		0.35 *			Active meas	surements	5012		1		f(x)	Math
Eye rise ti	ime	127.8	37 ps	127.8	7 ps	12	7.87 ps		27.87 ps		127.87 p			da.		Add /	Remove				Apps
Eye fall ti	ime	123.7	76 ps	123.7	бps	12	3.76 ps		23.76 ps		123.76 p			Eye helg		Ö	Eye width		ð.		
Eye bit ra	ite	4.9997	GHz	4.9997	GHz	4.99	97 GHz	4.9	997 GHz	4	.9997 GH			H					7 11)jšj	Logic
Eye ampl	litude	332.89	€mV	332.89	mV	332	.89 mV	33	2.89 mV		332.89 m			Eye top			Eye base				
Jitter (pea	ак to реак	81.48	34 ps	81.48	4 ps	81	.484 ps	8	1.484 ps		81.484 p			0 : Noise (R	MST		S/N ratio			\$	Settings
Jitter (6 *	σ)	66.81	12 ps	66.81	2 ps	66	.812 ps	6	6.812 ps		66.812 p			Duty cyc	le distortic	n 🌣	Eye rise tim		۵		Save/Recall
Jitter (RM	1S)	11.13	35 ps	11.13	5 ps	11	.135 ps	1	1.135 ps		11.135 p			Eye fall t	ime	ň	Eye bit rate				
Statist	tics:	Reset												Five amn	litude		Hiner Ineak	to neak)	*		0 I C
C1		X M1		X Eye1			-											-	-		
N HER AND A HER AND A				Source Tref: Range	2: C1 HW CI 2: 401 ps	DR										9		+ Math	+ FFT B	+ + lus Re	ef Gen Men
	Contraction of the local distance			Offset	: 0 s	2															
						1															
							Measu	rement Para	ameters			+ +	- ×								
							Measur	ement algor		Us	e measuren	nent window	*								
							Measu	re actual wid	ith	- 0	n										
							Thursday														
							Start	casurement	Mildow	Ste	ap.										
							- Aller			5 %			55 %								
								he start and	stop values	refer to the	e eye levels.										

15.00

LIVE DEMONSTRATION

R&S RTP High-Performance Oscilloscope SUMMARY – ADVANCED EYE ANALYSIS GET YOUR RESULTS FASTER

- ► Traditional eye diagram approaches
 - a. "Live Eye" with edge trigger for long-term monitoring
 - b. Continoued bit stream with SW-CDR processing for TX and signal path characterization
- ► New R&S approach: Hardware clock data recovery
 - Enables both, true "Live eye" and continued bit stream analysis with continuous running HW-CDR
 - Fastest approach to high statistical confidence
- ► In-depth analysis with "Advanced Eye" tools

THANK YOU.