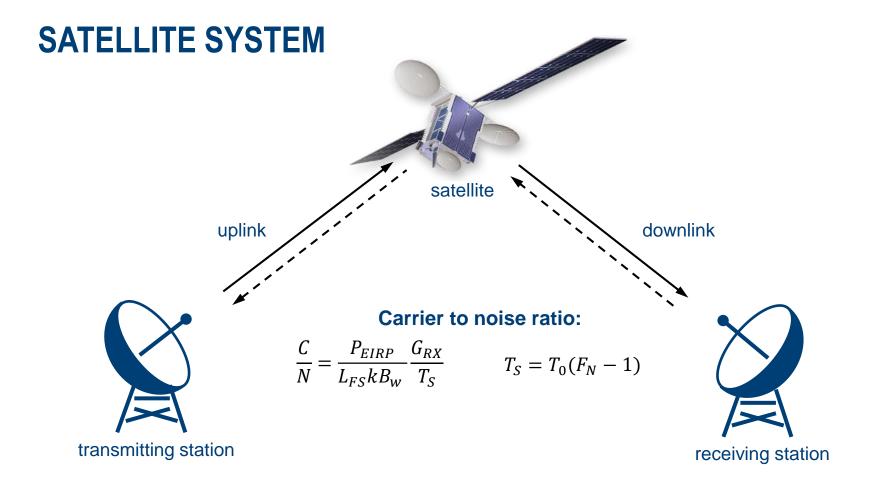
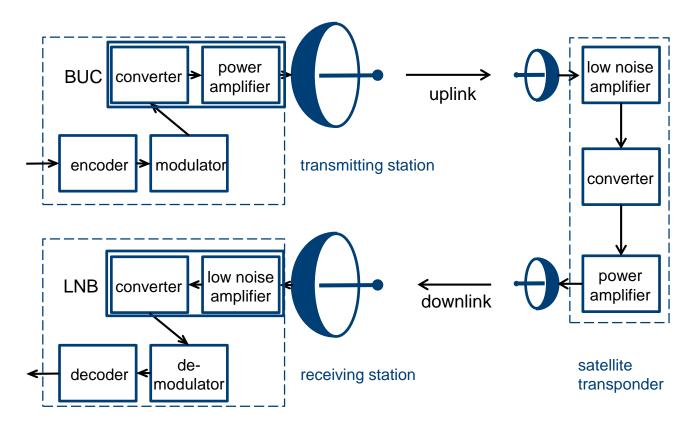
Satellite Test

STRIKING FEATURES OF THE R&S ZNA TO SUCCESSFULLY CHARACTERIZE SATELLITE AND HIGH-GAIN RECEIVERS

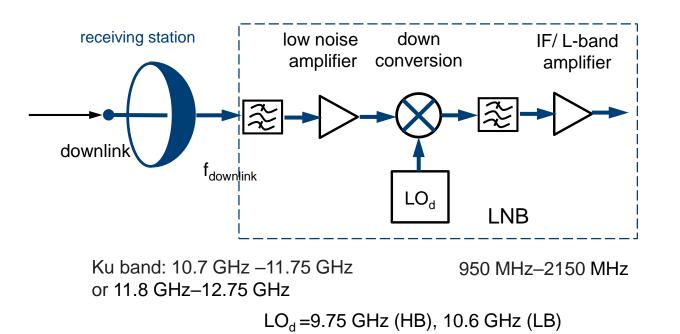

Albert Gleißner, Product Manager Vector Network Analyzers

Yvonne Weitsch, Market Segment Manager Satellite Test


ROHDE&SCHWARZ

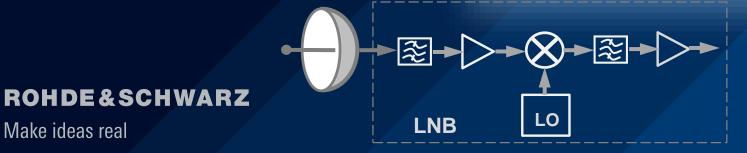
Make ideas real

SATELLITE SUBSYSTEMS



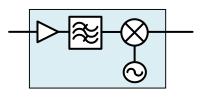
SATELLITE SUBSYSTEMS – RECEIVING STATION

\Rightarrow Receiver requirements and tests


- Group delay
- Sensitivity
- Selectivity
- Intermodulation
- Demodulation
- Symbol error rate

VECTOR NETWORK ANALYZERS R&S ZNA26 R&S ZNA43

How to characterize satellite and high-gain converters: R&S ZNA features and benefits



SATELLITE RECEIVER & CONVERTER TESTING AGENDA

I Agenda

- > Challenges of high-gain sat-converter characterization
- > R&S ZNA solution: details of related specifications, functions & options
- Exemplary measurement & test results
- Summary
- ➤ exemplary DUT:

Ku-band satellite down link receiver (LNB)

SATELLITE RECEIVER & CONVERTER TESTING EXAMPLE: KU-BAND LNB

I DUT specifications & characteristics

 Input frequency: 	10.95 GHz to 11.7 GHz
 LO internal 	10 GHz
– Gain	60 dB
 Compression level 	~ -55 dBm
 Noise figure 	0.8 dB
Wave guide input: Supply voltage	coax-to-wave-guide adapter +12 V to +24 V DC bias at output

I Test equipment

- ZNA26/43 with 4 ports, 2 sources
- Calibration unit or Cal kit, match, attenuator

CHALLENGES OF HIGH-GAIN DUT CHARACTERIZATION

■ Very low stimulus level of ~-70 dBm

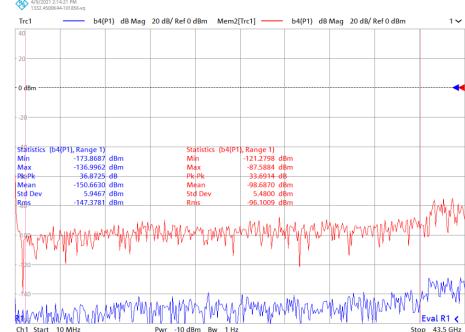
- System error correction & absolute power calibration
- > S11 (ie. a1 & b1) at low stimulus power

Long term stability

- Frequency converting DUT with Embedded LO
 - LO frequency offset lacking of LO synchronization
 - Overcoming LO drift for S-parameters, group delay test
- Wide scope of VNA functionality and measurement quantities
 - S-parameters (matching, conversion gain), absolute power (leakage)
 - Noise figure, Group delay, Compression, Intermodulation
 - Use of direct src/rec access, monitor access, combiner, pre-amps, ...

LOW POWER STIMULATION & S11 SENSITIVITY

I Maximum sensitivity: -151 dBm (typ)


- @ 1 Hz IFBW
- Direct channel access / reversed coupler
- Receiver step att in 0 dB position

I Typical application case: ~ -110 dBm

- IFBW = 1 kHz
- Using test port: coupler loss ~ 10 dB

I Uncertainty estimation:

- S/N with 15 dB DUT matching:
 - -75 dBm 15 dB = 90 dBm
- Sensitivity @ 1kHz = 110 dB
- S/N = 20 dB → \pm 0.85 dB uncertainty

 \bullet > ZNA sensitivity crucial, further improvements possible (30 dB internal pre-amp)

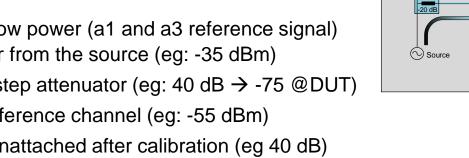
LOW POWER STIMULATION & S11 POWER SWEEP RANGE & ATTENUATORS

- Power sweep range
 - Electronic controllable power
 - e.g ZNA43:
 - P(min,el) = -80 dBm
 - P (max, el) \sim +6 dBm to +20 dBm
 - Sweep range ~90 dB to 100 dB
- Mechanical step attenuators
 - 0 dB to 70 dB /10 dB
- ∎ (Reference) receiver linearity
 - in -50 dBm to 0 dBm:
 - 0.03 dB (typ)

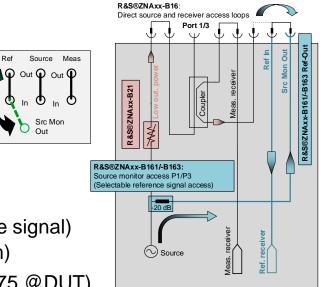
3/13/2018 1:52:52 PM dB Mag 11 dB/ Ref -30 dBm CW1GHz _____ a1(P1) dB Mag 11 dB/ Ref -30 dBm $1 \sim$ dB Mag 11 dB/ Ref -30 dBm CW20GHz — a1(P1) dB Mag 11 dB/ Ref -30 dBm CW30GHz a1(P1) dB Mag 11 dB/ Ref -30 dBm -80.0000 dBm -79.6344 dBm 9.0000 dBm 9.0162 dBm • M2 20.0000 dBm 19.3744 dBm -19--30 dBm **---**.41--63-

Frea 40 GHz Bw 100 Hz

Stop 25 dBm


Highly accurate control of a very wide power range

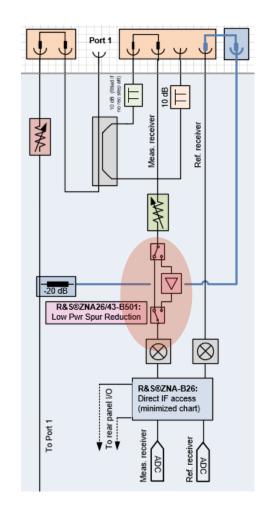
Ch1 Start -90 dBm


LOW POWER STIMULATION **OPTION ZNAXX-B163 (HANDLING OF A LOW REFERENCE SIGNAL)**

Options ZNA26/43-B161 (P1) -B163 (P1 & P3)

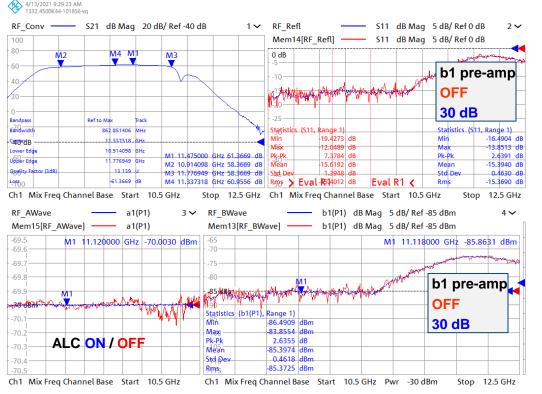
- Purpose: reference signal to be picked up before or after the step attenuator
- Consists in: Internal splitter and additional front panel connector
- Activation: Swap of B16 front panel jumper
- Application: handling of very low power (a1 and a3 reference signal)
 - "Medium" electronic power from the source (eg: -35 dBm)
 - Additional attenuation by step attenuator (eg: 40 dB \rightarrow -75 @DUT)
 - Fairly high power in the reference channel (eg: -55 dBm)
 - Step attenuator remains unattached after calibration (eg 40 dB)
 - Select power for calibration and measurement using 100 dB electronic power range

Port 1/3


LOW POWER STIMULATION & S11 OPTION ZNAXX-B501 (→ ISOLATION AMPLIFIER)

Switchable amplifier in the Port 1 measurement path

- Application #1: suppression of LO leakage
 - Crosstalk of the LO from the measurement receiver IF mixer to the test port
 - LO leakage may reach up to -70 dBm
 - Unnoticed DUT compression


Solution

- Isolation amplifier (0 dB, 30 dB)
- Port 1 only
- Spur level < 110 dBm

LOW POWER STIMULATION & S11 OPTION ZNAXX-B501 (→ FOR B1 AMPLIFICATION)

- Application #2: Improvement with S11 measurement
- Test case example
 - Stimulus power -70 dBm
 - DUT matching ~ 15 dB
 - → b1 ~ -85 dBm
 - \rightarrow S/N ~ 15 dB
 - Peak-Peak: about ±2 dB
- Improvement
 - B501 pre-amp set to 30 dB
 - trace noise ~tenth dB
 - @ -85 dB measured power

13 Rohde & Schwarz

CALIBRATION SMARTERCAL

I SmarterCal:

- Combines power calibration and system error correction (SEC)
- PCal of one port is "copied" to all ports involved
- Comprehensive menus give control on cal power, meas power etc

Benefit

- Calibration of the reference receiver with power test head
 ✓ at "high" level, high accuracy with test head
- Calibration of the source level using the reference receiver
 ✓ at "low" measurement level, using receiver linearity

CALIBRATION POWER SCHEME

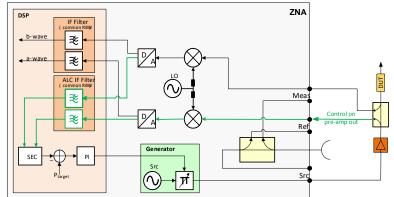
Example: NF "Cal & Settings Overview"

Calibration

- SEK (forward/reverse): -40 dBm / -5 dBm
- Power meter ref-rec cal: -5 dBm
- Source level cal: -75 dBm (electronic: -35 dBm, src step att: 40 dB)

Measurement

DUT stimulus: -75 dBmB163: a1 reference: -55 dBm

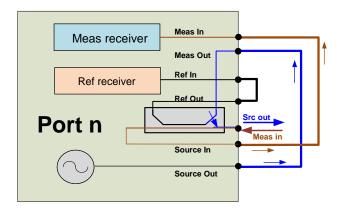

Neasurement Settings		Calibration Settings	
Driving Port P1 O Ceneral Power Noise Bandwidth -35 dBm 2 MHz Source Step Att 0 dB 0 dB 0 0 dB 0 0 dB 0 0 dB 0 0 nm 0 <	Advanced IF Frequency auto IF Gain Mode Manual IF Gain Mode P1 a1: 10 dB / b1: 10 dB IF Gain Mode P2 a2: 10 dB / b2: 10 dB Ambient Temperature 296.5 K Sideband Correction active	Calibration Power Settings Drive Port (Forward Meas) P1 Source Power 0 dBm Source Step Att 40 dB Drive Port (Reverse Meas) P2 Source Power -5 dBm Source Step Att 0 dB	Source Power -5 dBm Source Step Att OdB General Noise Det Meas Time -50 ms

LONG TERM POWER ACCURACY AUTOMATIC LEVEL CONTROL FUNCTION (ALC)

Automatic Level Control:

- Online adjustment of the source power
- Control loop: ref-signal -> ref-receiver -> source
- Reference signal picked up internally or from any access point in the external setup
- Overcoming drift, varying matching conditions
- All a- and b-waves can be used as reference
- Accuracy consideration using ALC
 - P_{out} in the reference plane referenced to the reference receiver
 - Accuracy given by reference receiver calibration accuracy

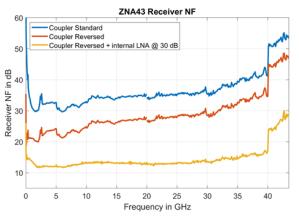
red trace: a1 w/o ALC blue trace: a1 with ALC active

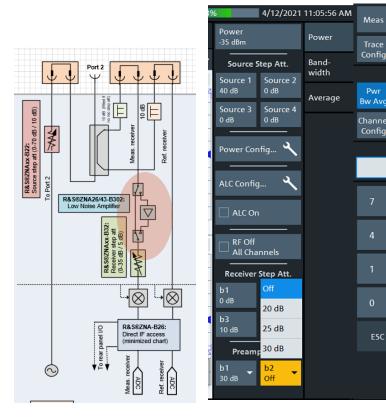


OPTIMIZE RECEIVER SENSITIVITY OPTION ZNAXX-B16 (DIRECT CHANNEL ACCESS)

I Options ZNA26/43-B16

- Application
 - Direct access to the source and receivers, bypassing the coupler
 - Insertion of auxiliary devices
 - Rerouting of signal paths
- Especially for NF test
 - Inverse coupler operation:
 - No coupler loss with the mesurement signal
 - Receiver sensitivity increased by ~>10 dB





OPTIMIZE RECEIVER SENSITIVITY RECEIVER SETTING: ZNAXX-B302 NF PRE-AMP

- Measurement receiver pre-amplifier Port 2
- Amplifier can be switched to:
 - Off (bypassed)
 - 30 dB gain
 - Gain stages from combination with receiver attenuator

Decreases receiver noise figure:

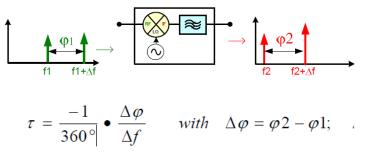
MEASUREMENT SW OPTIONS & FUNCTIONS ZNA-K4

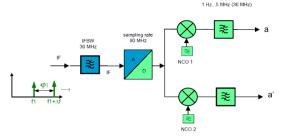
Option ZNA-K4: Mixer and arbitrary frequency conversion measurements

Dedicated Menu for mixer test configuration

Dedicated Menu for intermodulation test configuration

Arbitrary configuration of frequency and power of all 4 sources^(*), all 8 receivers 10 GHz ... 12 GHz 10 dBm 1 GHz ... 3 GH Sweep Type Start Frequency Stop Frequency Number of Points Base Power 10 GHz 12 GH -10 dBm Input Port (RF) Mixer 2 Output Port (IF) IF = RF - LO (Down, USB) LO1 Frequence **RF** Frequenc IF Frequence Base Freg 👻 10 GHz ... 12 GHz Fixed 🔽 🤊 GHz Auto 🔽 1 GHz ... 3 GHz RE Dow 10 dBm 7 dBm Base Pwr 🔻 -10 dBm 10 dB


🊸 Port Setting:				Ch1				•	• •	×
Arb Frequency	/ Ar	bitrary P	ower Rece	eiver Level	Input	t / Output +				
#	Info	Source RF Off	Source Gen	Freq. Conve	rsion	Frequency Result	Receiver Freq.	Receiver Freq. Conversion	Receiver Freq a, b Rslt	
O Port 1	ZNA43			fb		1 GHz 2 GHz	Src Freq. 🔻		1 GHz 2 GHz	
Port 2	ZNA43			fb - 10 MHz		990 MHz 1.99 GHz	Src Freq. 🔻		990 MHz 1.99 GHz	
Port 3	ZNA43		-	10 MHz		10 MHz	Src Freq. 🔻		10 MHz	
Port 4	ZNA43			fb		1 GHz 2 GHz	Src Freq. 🔻		1 GHz 2 GHz	
Conv. LO	ZNA43			fb		1 GHz 2 GHz	-			
Displayed Cole and View										


(*) 4-port ZNA: standard 2 src, 4 src with option B3

MEASUREMENT SW OPTIONS & FUNCTIONS ZNA-K9

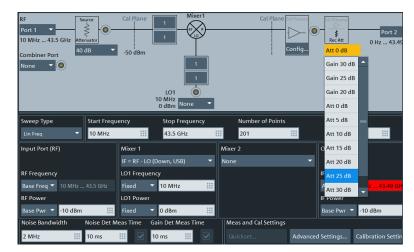
I Option ZNA-K9

- Embedded LO converter group delay test
- using a two-tone signal, the phase difference between both tones is measured at the input and at the output of the DUT (a, a`, b, b`)
- ZNA unique "dual digital down conversion"
 Includes Embedded LO tracking function
- \checkmark Compensates even for fast embedded LO drift
- ✓ Easy configuration
- \checkmark No auxiliary components with internal combiner

MEASUREMENT SW OPTIONS ZNA-K30

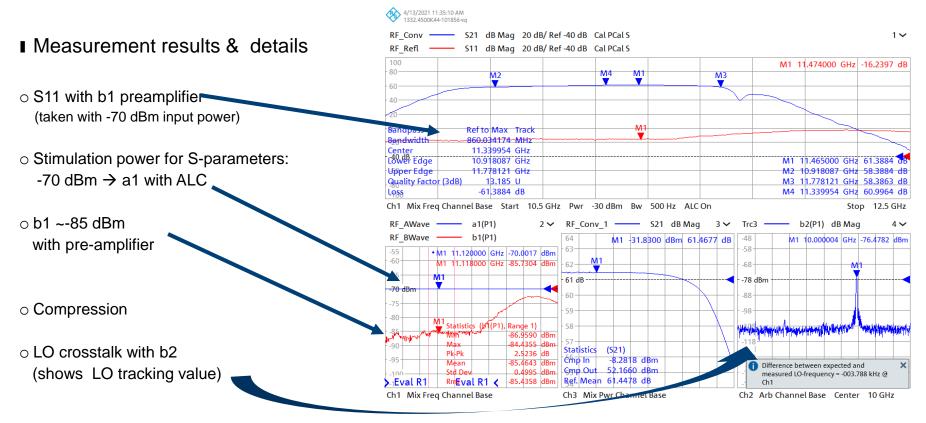
I Option ZNA-K30

■ Noise figure measurements

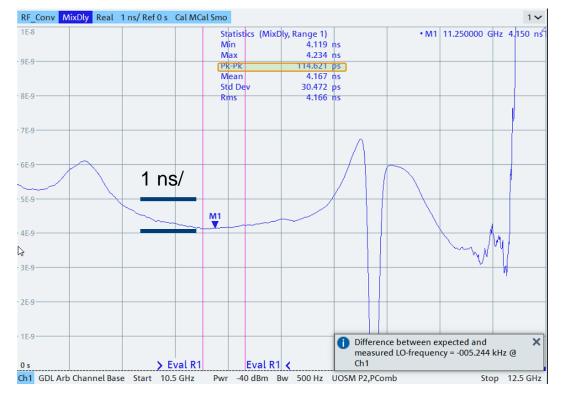

- Frequency conversion capability with

ZNA-K4 installed

 Supports internal pre-amp (up to 30 dB gain)


Quickset

 Auto-setting of test parameters on basis of the DUT characteristics


SATELLITE RECEIVER & CONVERTER TESTING S-PARAMETER RESULTS

R&S ZNA: High Gain Converter Characterization

SATELLITE RECEIVER & CONVERTER TESTING GROUP DELAY RESULTS

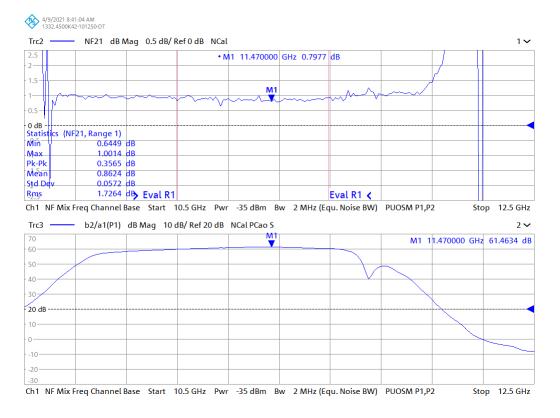
- Embedded LO converter group delay
- Measured: 4 ns
- I peak-peak ~0.1 ns
- I (in middle range of transmission path)

SATELLITE RECEIVER & CONVERTER TESTING NF RESULTS

Expected value

≻ 0.8 dB

Measured mean value


- ≻ 0.86 dB
- > incl test head uncertainty (0.1 dB)
- Loss of f-f power meter adapter is deembedded

Details

• Stimulation power: -75 dBm

(30 dB att - 35 dBm electronic)

o Gain: 61 dB

HIGH-GAIN CONVERTERS SUMMARY

Option	Function	Benefit			
Source port / low signal stimulus / S11					
ZNAxx-B163:	Selectable reference signal access	Low trace noise of a1 & a3 even with at very low output power			
ZNAxx-B501:	b1 amplification	Low trace noise of b1 / S11 measurement with low power			
ZNAxx-B2n	Source step attenuators	Optimize the power level plan			
ZNAxx-B213	Internal combiner	Two-tone signal for ZNA-K9 embedded LO group delay and intermodulation test			
Receive port					
ZNAxx-B3n	Receiver step attenuators	Compression free measurements			
ZNAxx-B302	Receiver pre-amplifer	Improve the ZNA receiver sensitivity for NF measurements			
ZNAxx-B16	Direct source/receiver access	Increased receiver sensitivity, reversed coupler operation			

HIGH-GAIN CONVERTERS SUMMARY

Option/Feature	Function	Benefit			
Calibration & Accuracy & Specifications					
SmarterCal	System error correction and source/receiver power calibration	Easy calibration of comprehensive setups, very low levels, power calibration			
ALC	Automatic realtime source level control	High long-term power accuracy			
Power sweep range	Electronic power sweep range of up to 100 dB	Get the optimum excitation power for calibration and measurements			
Receiver quality	Sensitivity up to -151 dBm	High S/N ratio for high accuarcy / low trace noise			
Software & features					
ZNA-K4Frequency conversion measurementsZNA-K9Embedded LO group delay measurements(incl LO tracking)Compensates DUT embedded LO driftZNA-K30Noise figure measurements		Comprehensive converter characterization (gain, matching, crosstalk, compression, intermodulation, group delay, noise figure,)			

ZNA - THE BEST SOLUTION FOR YOUR MOST DEMANDING NEEDS!

ROHDE&SCHWARZ

Make ideas real

