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Typically Lots of Power Rails
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PDN (Power Distribution Network) Example
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Power Rail Testing

► IC suppliers specify # of power rails, voltage for each, and tolerance for each.
− FPGAs, ASICs, CPUs, DDR memory…

► Measurements: sequencing, noise / ripple, drift, load/step response, EMI
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Power Rail Measurements: Noise / Ripple (Vpp)
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Power Rail Measurements: Supply Drift
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Power Rail Measurements: Load/Step Response
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Power Rail Measurements: Coupled signals (EMI)
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Oscilloscope: 
Primary tool for power rail analysis
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DC power Rail (1 V/div)
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Power Rail Measurement Challenges
Lower rail voltages and smaller tolerances

11

10%

1%

To
le

ra
nc

e

5%
Rail 

Value
Tolerance Need to 

measure
3.3 V 1% 33 mVpp

1.8 V 2 % 36 mVpp

1.2 V 2 % 24 mVpp

1 V 1 % 10 mVpp

1 V5 V 3.3 V 1.8 V

170 mVpp

Easy to measure

12 V

Hard to Measure

500 mVpp

10 mVpp33 mVpp

Examples

DC Rail
Scope measurement noise can 

approach or exceed needed 
signal measurement values
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Measurement Noise… 
is a function of what scope you use
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You will never be able to measure signal attributes smaller than the intrinsic noise of the scope.

Intrinsic measurement noise with all input signals disconnected.

Scope A
Scope B

Less noise More noise
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Measurement noise…
is a function of full-scale vertical scaling  (% of full vertical)
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10 mV full screen 100 mV full screen 5 V full screen

Least noise More noise Even more noise
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Measurement Noise: Insufficient Internal Offset Impacts
Requires using a higher vertical sensitivity  more noise
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2.4 V rail

@100 mV/div, Vpp = 75 mV
79% overstated

2.4 V rail

@5 mV/div, Vpp = 42 mV

Using max built-in scope offset Using built-in probe offset
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Measurement Noise…
is a function of Measurement bandwidth
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Noise in time domain

Distribution of noise in freq domain

Noise in time domain
= 

∫ freq domain form 0 to BW
4 GHz2 GHz

More measurement bandwidth = more measurement noise
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Measurement Noise…
is a function of measurement signal path (50Ω / 1 MΩ) +probe + probe accessories
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Measurement Considerations

How important is measurement accuracy?
1. Learn & use scope settings that impact accuracy
2. Investment in low-noise scope with needed BW 

for your power rail needs
3. Investment in specialized power rail probes

.
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Measurement Considerations

How important is measurement accuracy?
1. Learn & use scope settings that impact accuracy
2. Investment in a low-noise scope with needed 

BW for your power rail needs
3. Investment in specialized power rail probes

.
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Four Measurement Approaches
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Standard 
10:1 

passive 
probe

Low BW
1:1

passive 
probe

50 Ω cable
(with blocking cap)

Specialized
power rail 

probe
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Device Under Test – 3.3V Power Rail
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USB 
power

3.3 V rail
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10:1 Passive Probe
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Standard 
10:1 

passive 
probe

Low BW
1:1

passive 
probe

50 Ω cable
(with blocking cap)

Specialized
power rail 

probe
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Advantages Disadvantages
► Comes standard with most scopes 

− no extra expense
► 1 MΩ loading at DC

− Preserves expected DC value
► Easy to connect using browser tip

− Multiple ground alternatives

► Significant noise
− 10:1 attenuation
− Minimum vertical setting of 10 mV/div

► Long grounds
► BW limited (500 MHz for ZP-10)
► No solder-in alternative
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10:1 Passive Probe
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Alligator clip

3.1V rail

Vpp: 69 mV

500 mV

@ 500 mV full screen
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10:1 Passive Probe with Alligator Clip 



Noise: Function of Vertical Full Scale 
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Alligator clip
Vpp: 61 mV

3.1V rail

100 mV

@ 100 mV full screen
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Noise: Function of Probing Accessories
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Ground 
spring

Vpp: 32 mV
@ 100 mV full screen

3.1 V rail
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ADD an extra hand
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Probe Positioners

3D Probe PositionerProbe Positioner 2 Leg
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1:1 Passive Probe
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Standard 
10:1 

passive 
probe

Low BW
1:1

passive 
probe

50 Ω cable
(with blocking cap)

Specialized
power rail 

probe
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► Low cost
► Excellent 1 MΩ loading at DC

− preserves expected DC value
► Ability to scale to 1 mV/div
► Easy to connect using browser tip

− Ground spring ground alternative

► Limited BW 
− 38 MHz for ZP-1X
− under reports Vpp measurements
− masks high freq signal coupling

► Limited offset – may require AC coupling
► No solder-in alternative
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Advantages Disadvantages
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1:1 Passive Probe



38 MHz 1:1 Passive Probe with Ground Spring 
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? V rail

Vpp: 12 mV
@ 2 mV full screen

Ground 
spring

Not enough offset, required AC coupling

Digital Test: Power Integrity Fundamentals



50Ω Path
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Standard 
10:1 

passive 
probe

Low BW
1:1

passive 
probe

50 Ω cable
(with blocking cap)

Specialized
power rail 

probe
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50Ω Path

Advantages Disadvantages
► 50 Ω scope path typically has less noise 

than 1M Ω scope path
► SMA connector or solder-in pigtail allows for 

measurement consistency and ease of 
access

► 50 Ω loading at DC reduces power rail 
voltage

► Insufficient offset (requires blocking cap or 
AC coupling)
− Masks DC drift
− Eliminates ability to see true DC voltage
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50Ω Path: AC Coupling
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• Set to 50Ω path (channels setup)
• Attenuation to 1:1 (probe setup)
• 50Ω path (limited offset may require 

AC coupling)
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50Ω Path: 
Sufficient offset not available:  Requires 200 mV/div scaling.
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50Ω Pigtail

3.046 V rail

Vpp: 79 mV
@ 200 mV/div

2 V
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50Ω Path with Blocking Cap (3dB BW = ~20 MHz)
No ability to measure absolute vertical values
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50Ω Pigtail

? V rail

Vpp: 4.7 mV
@ 10 mV full screen

10 mV

Blocking
cap 

(~20 MHz)
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Blocking Caps (and AC coupling) Create Measurement Problems
AC coupling mode and blocking caps eliminate ability to see DC changes 

DC Drift

DC blocks
Eliminates low freq visibility

low freq DC changes
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Power Rail Probes
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Standard 
10:1 

passive 
probe

Low BW
1:1

passive 
probe

50 Ω cable
(with blocking cap)

Specialized
power rail 

probe
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Lots of Probes for Different Applications 
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R&S@RT-ZP1X 
1:1 38MHz passive

General 
purpose

Specialty
(application focus)

R&S@RT-ZP10 
10:1 500 MHz passive Power rail
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Power Rail Probes…Specialty Tool
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Circular saw
Great for a bunch of stuff. 

Can’t cut door jambs.

Jamb saw.
Does one task really well.  
Not useful for anything else.
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Power Rail Probe

Advantages Disadvantages
► Low noise (typically 1:1 attenuation ratio)
► Built-in offset (typically at least +/- 12V)
► Excelling loading at DC (typically 50 KOhms)

− Power rail retains DC value
► Browser and solder-in connection

► Initial investment expense
► Requires solder-in/SMA for full BW
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Power Rail Probe Specs
R&S example
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ı Designed uniquely for 
measuring  small 
perturbations on power 
rails

ı Active, single-ended probe
ı Low noise with 1:1 

attenuation
ı Offset compensation 

capability
ı Built-in DC meter

Key Specifications
Attenuation 1:1
BW 2 GHz 
Browser BW 350 MHz

Dynamic Range ±850 mV

Offset Range > ±60 V
Probe Noise
Scope standalone
Scope + Probe (at 1 GHz, 1mV/div)

107 µV ACrms
120 µV ACrms

Input Resistance 50 kΩ @ DC

R&S ProbeMeter Integrated

Coupling DC or AC
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Typical Power Rail Probe Solder-in Technique
Active probe head, main cable and solder-in cables
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50 Ω SMA coaxial solder-in (2.5 GHz BW) 

SMA to 2-pin Socket
ZBX00SAMS-P (reference sell)
http://www.zebax.com/index_files/page1044.htm

Direct connect to SMA
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Some Power Rail Probes have an Integrated Voltmeter 
R&S probes call this a “ProbeMeter”

► Separate circuit with 18-bit ADC inside the probe
► Independent of scope ADC
► Measures DC value with 0.05% accuracy

− > 10X more accurate than scope channel for 
DC measurement

► Eliminates need to attach a separate DVM in 
parallel to accurately measure DC
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Integrated Volt Meter 
with cut/paste DC offset
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50Ω Pigtail

Power Rail Probe

3.293 V rail
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Power Rail Probe
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50Ω Pigtail

Power Rail Probe

3.294 V rail

Vpp: 6 mV
@ 10 mV full screen

10 mV
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Measurement Technique Results Comparison
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Standard 
10:1 

passive 
probe

Low BW
1:1

passive 
probe

50 Ω cable
(with blocking cap 

or AC coupling)

Specialized
power rail 

probe

Vpp: 69 mV Vpp: 14 mV Vpp: 15 mV Vpp: 6 mV 

Noisy
10 MΩ DC loading 
Limited BW
Limited scaling

Low noise
1MΩ DC loading 
Limited BW
Limited offset

Low noise
50 Ω loading
Inability to see drift
Inability to see DC value

Low noise
50 KΩ loading
High BW
Built-in offset
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How Much Bandwidth or PI Measurements?
.
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Freq

Power

Coupled signals

Switching freq
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How Much Bandwidth Do You Need?
Use the FFT to help you determine
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How much is needed here? How much is needed here?

2.4 GHz

 Switching freq

3 GHz
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How Much BW Do You Need?
Start high and reduce.  Use FFT to help determine how much.
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20 MHz
Vpp = 32 mV

20 MHz

200 MHz
Vpp = 33 mV

200 MHz

1GHz
Vpp = 40 mV

1 GHz
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Extra Credit: What’s Causing Periodic Rail Spikes?

49

Timebase at 4 ms / div
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Power Rail Peaking Corresponds to I2C Packets
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Attach to I2C signals
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FFT on Power Rail Show 10 MHz and Harmonic Tones
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10 MHz 30 MHz
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Near Field Probe  
10 MHz EMI…. coming from 10 MHz oscillator 
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10 MHz
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What is the typical root cause for PI problems?
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Impedance



Power Delivery Network (PDN): Impedance

The network has an impedance (ZPDN) associated with the path
from the Voltage Regulator Module (VRM) to the load (e.g. FPGA)
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Board Caps
Package

On-chip Decaps

PCB Board

VRM

 resonances cause PI problems
 resonances cause EMI / EMS problems

PDN Impedance:
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How to measure with a  VNA?
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Find and Fix Impedance Issues
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SUMMARY / Q&A

1. Use a scope with low noise 
2. Adjust vertical scale to most sensitive setting (noise 

reduction)
3. Apply bandwidth limit filters (noise reduction) 
4. Use a power rail probe (offset + noise reduction + 

excellent DC loading)
 During design, consider how you are going to 

probe your prototype
 Browser (more noise, lower BW)
 SMA (low noise, easy access)
 Across a bypass cap (SMA coax with pigtail 

solder accessory)
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Additional Information
R&S Power Rail Probe Web Page

https://www.rohde-schwarz.com/us/product/rtzpr20-productstartpage_63493-376514.html

Probes and Accessories Brochure
https://scdn.rohde-
schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/Probes_and_accessories_bro_en_360
6-8866-12_v1500.pdf

Application cards:
Accurate and fast power integrity measurements: Application card 
https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/RT-
ZPR20_Accurate_ac_en_5214-9515_92_v0100.pdf

Verifying power integrity for DDR memories:
https://www.rohde-schwarz.com/us/applications/verifying-power-integrity-for-ddr-memories-application-card_56279-415355.html

Power Integrity Video
https://www.youtube.com/watch?v=4gw-GQD9hR4

Five Tips for fast, accurate power integrity measurements
https://cdn.rohde-schwarz.com/campaigns-media/data/forms/en/Five-techniques_power-integrity-measurements_misc_en_5215-
0434-92_v0100_96dpi.pdf
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