HIGH-SPEED CABLES FOR PCIe 5.0 / 6.0 AND IEEE802.3ck: SIGNAL INTEGRITY CHALLENGES, PERFORMANCE PARAMETERS AND TEST AUTOMATION

Martin Stumpf R&S Segment Manager, High-Speed Digital Design Test

Matthew Burns Samtec Global Director, Technical Marketing

Bryant Hsu R&S Product Manager, Vector Network Analyzers

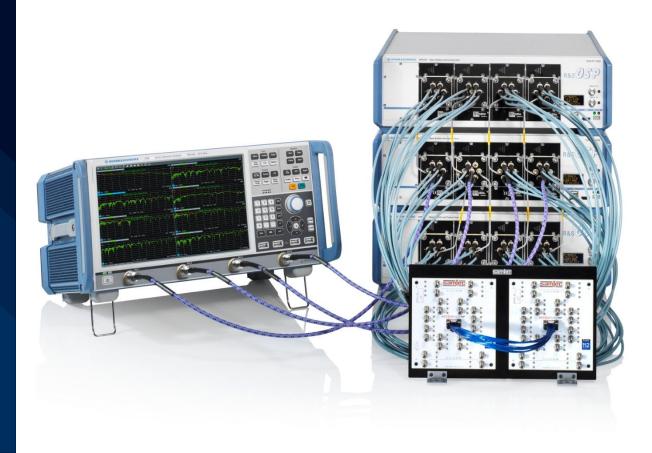
ROHDE&SCHWARZ

Make ideas real

JOINED TODAY BY

Matthew Burns Samtec Global Director, Technical Marketing

ROHDE&SCHWARZ


Make ideas real

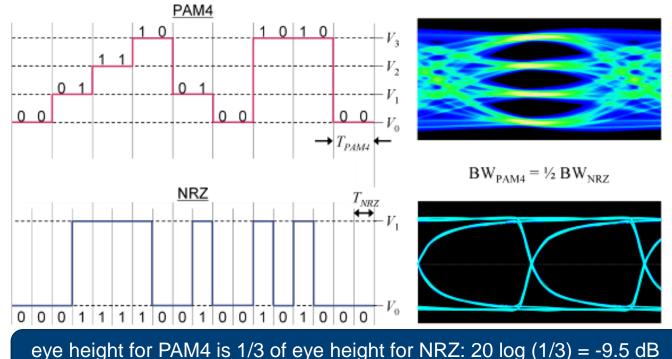
HIGH-SPEED CABLES FOR PCIe 5.0 / 6.0 AND IEEE802.3ck

SIGNAL INTEGRITY CHALLENGES, PERFORMANCE PARAMETERS AND TEST ASPECTS

DATA CENTER ECOSYSTEM: EVOLUTION OF KEY TECHNOLOGIES

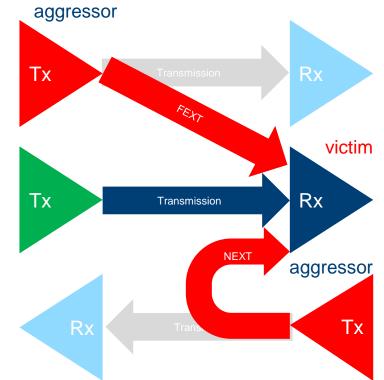
PCIe: Processing, Storage

IEEE 802.3: Datacom


Raw BW (per lane)	Modulation NRZ / PAM	Symbol Rate (per lane)	IEEE Spec.	Raw BW (per lane)	Modulation NRZ / PAM	Symbol Rate (per lane)
16.0 Gbps	NRZ	16.0 GBd	802.3bj/by	25.78125 Gb/s	NRZ	25.78125 GBd
32.0 Gbps	NRZ	32.0 GBd	802.3cd	53.125 Gb/s	PAM4	26.5625 GBd
64.0 Gbps	PAM4	32.0 GBd	802.3ck	106.25 Gb/s	PAM4	53.125 GBd
			802.3dj			
	(per lane) 16.0 Gbps 32.0 Gbps 64.0 Gbps	(per lane)NRZ / PAM16.0 GbpsNRZ32.0 GbpsNRZ64.0 GbpsPAM4	(per lane)NRZ / PAM(per lane)16.0 GbpsNRZ16.0 GBd32.0 GbpsNRZ32.0 GBd64.0 GbpsPAM432.0 GBd	(per lane)NRZ / PAM(per lane)16.0 GbpsNRZ16.0 GBd802.3bj/by32.0 GbpsNRZ32.0 GBd802.3cd64.0 GbpsPAM432.0 GBd802.3ck	(per lane) NRZ / PAM (per lane) (per lane) (per lane) 16.0 Gbps NRZ 16.0 GBd 802.3bj/by 25.78125 Gb/s 32.0 Gbps NRZ 32.0 GBd 802.3cd 53.125 Gb/s 64.0 Gbps PAM4 32.0 GBd 802.3ck 106.25 Gb/s	(per lane)NRZ / PAM(per lane)(per lane)(per lane)NRZ / PAM16.0 GbpsNRZ16.0 GBd802.3bj/by25.78125 Gb/sNRZ32.0 GbpsNRZ32.0 GBd802.3cd53.125 Gb/sPAM464.0 GbpsPAM432.0 GBd802.3ck106.25 Gb/sPAM4

used cable formats: x1, x2, x4, x8, x16

used cable formats: CR1, CR2, CR4, CR8, CR16


GENERAL SIGNAL INTEGRITY CHALLENGES: CROSSTALK IN SYSTEMS WITH PAM 4

 \rightarrow higher sensitivity to noise and crosstalk

GENERAL SIGNAL INTEGRITY CHALLENGES: CROSSTALK

- ► crosstalk:
 - near end crosstalk: NEXT
 - far end crosstalk: FEXT
- multiple aggressors: power sum
 - power sum NEXT: PSNEXT or multi-disturber NEXT: MDNEXT
 - power sum FEXT: PSFEXT or multi-disturber FEXT: MDFEXT

TEST PARAMETERS IN PCIE 5.0 / 6.0 EXAMPLE: PCIe 5.0 / 6.0 INTERNAL AND EXTERNAL CABLES

Parameters according to PCIe Specification:

- ► Differential Insertion Loss (Sdd21): mask check against IL limit mask
- Differential Return Loss (Sdd11 and Sdd22): mask check against RL limit mask iRL metric: method of waiver, if RL violates limit mask
- NEXT and PSNEXT (power sum of individual NEXT aggressors): mask check against PSNEXT limit mask

ccICN_{NEXT} metric: method of waiver, if PSNEXT violates limit mask

- FEXT and PSFEXT (power sum of individual FEXT aggressors): mask check against PSFEXT limit mask ccICN_{FEXT} metric: method of waiver, if PSFEXT violates limit mask
- ► Intra-Pair Skew EIPS (Effective Intra-Pair Skew): limit check
- ► Inter-Pair Skew (Lane-to-Lane Skew): limit check

Beyond Specification:

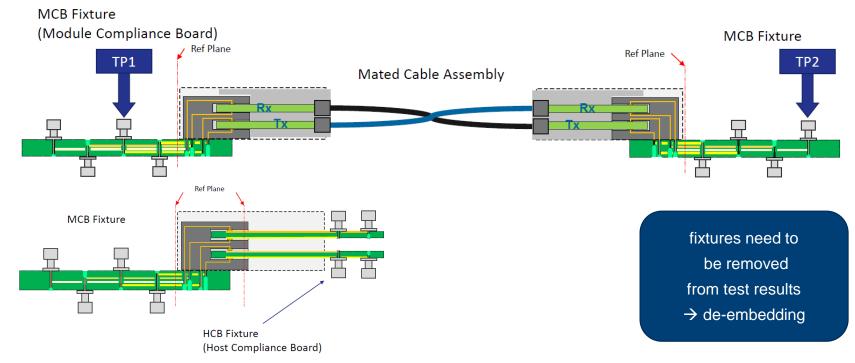
► Differential Trace Impedance Profile

▶ ...

TEST PARAMETERS IN IEEE 802.3ck EXAMPLE: 802.3ck COPPER CABLE ASSEMBLIES (CR)

Parameters according to IEEE Specification:

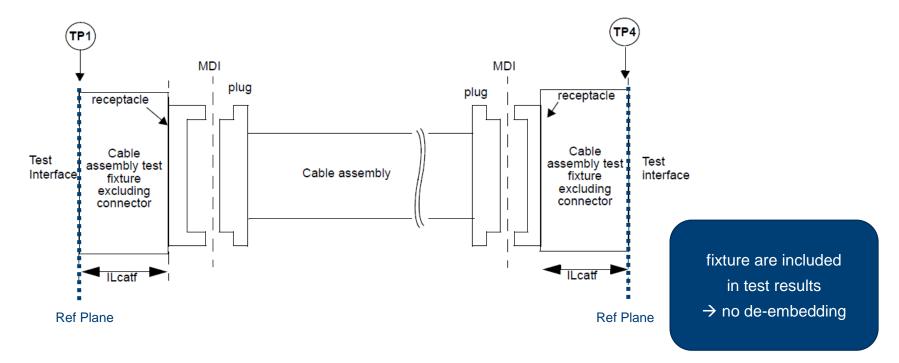
- Differential Insertion Loss (Sdd21): mask check against ILdd limit mask
- ► Differential-Mode to Common-Mode Return Loss (Scd11 and Scd22): mask check against RLcd limit mask
- Differential-Mode to Common-Mode Insertion Loss (Scd21) minus Differential Insertion Loss (Sdd21): mask check against ILcd-ILdd limit mask
- Common-Mode to Common-Mode Return Loss (Scc11 and Scc22): mask check against RLcc limit mask
- Metrices:


▶ ...

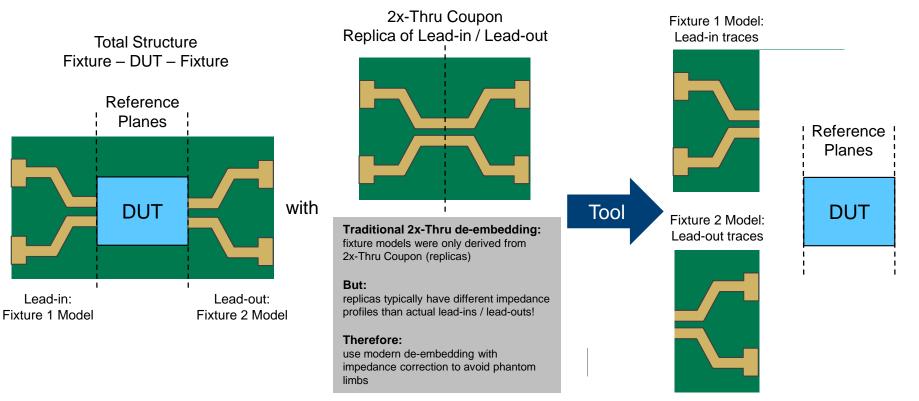
- Channel Operating Margin (COM)
- for cable assemblies with COM < 4dB: Effective Return Loss (ERL)

Beyond Specification:

Differential Trace Impedance Profile


REFERENCE PLANE DEFINITION IN PCIe EXAMPLE: PCIe 5.0 / 6.0 INTERNAL AND EXTERNAL CABLES

Source: PCI-SIG Electrical Work Group (EWG): PCIe 5.0/6.0 External Cable Specification (in progress)

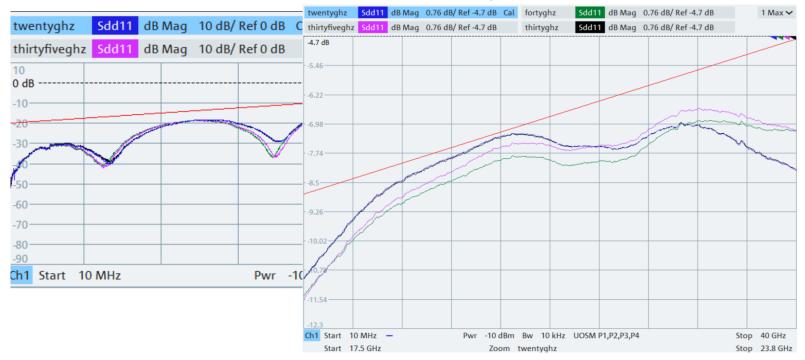

Rohde & Schwarz

REFERENCE PLANE DEFINITION IN IEEE 802.3 EXAMPLE: 802.3ck COPPER CABLE ASSEMBLIES (CR)

Source: IEEE Std 802.3bj-2014

TEST FIXTURE CHARACTERIZATION AND DE-EMBEDDING HOW IT WORKS

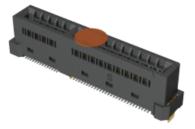
Rohde & Schwarz


TEST FIXTURE CHARACTERIZATION AND DE-EMBEDDING EXAMPLE: PCIE 5.0 CEM CONNECTOR FIXTURE

For best results: characterize fixture lead-ins / lead-outs up to 40 GHz

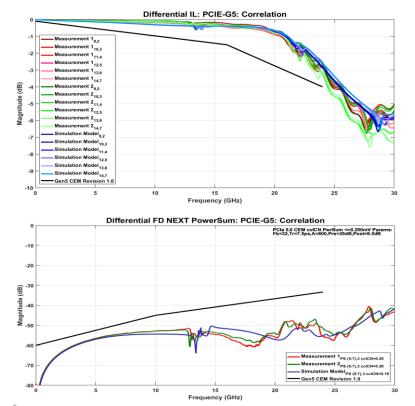
TEST FIXTURE CHARACTERIZATION AND DE-EMBEDDING EXAMPLE: PCIE 5.0 CEM CONNECTOR FIXTURE

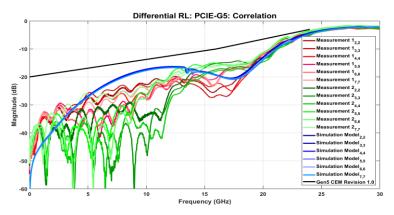
For best results: characterize fixture lead-ins / lead-outs up to 40 GHz


HIGH-SPEED CABLES FOR PCIe 5.0 / 6.0 AND IEEE802.3ck

REQUIREMENTS AND IMPLEMENTATIONS

PCIE CONNECTOR AND CABLE PERFORMANCE: MAIN REQUIREMENTS

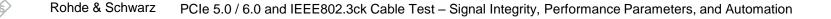

- ▶ PCIe 5.0 and 6.0 CEM Connector
 - FD IL, RL and Crosstalk limits
 - Excursions for crosstalk introduced with PCIe 5.0: ccICN (expected to be continued in PCIe 6.0)
 - Excursions for return loss expected to be introduced with PCIe 6.0: iRL (not released)
- PCIe 5.0 and 6.0 Cable Standard around SFF-TA-1016 (internal cables) and SFF-TA-1032 (external cables) is expected but not released
 - Separate requirements for mated cable assemblies and mated cable connectors
 - FD IL, RL and Crosstalk limits
 - Excursions for crosstalk (ccICN) and return loss (iRL)
 - Intra-Pair Skew



PCIe 5.0 FREQUENCY DOMAIN REQUIREMENTS: EXAMPLES

PCIe CEM 5.0 frequency limits and example measurements

Rohde & Schwarz

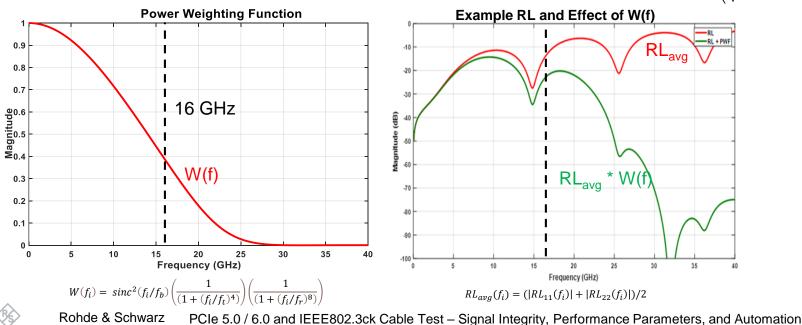

PCIe 5.0 / 6.0 and IEEE802.3ck Cable Test – Signal Integrity, Performance Parameters, and Automation

TEST PARAMETERS IN PCIe 5.0 / 6.0 EXAMPLE: PCIe 5.0 / 6.0 INTERNAL AND EXTERNAL CABLES

Why excursions: introduction of iRL and ccICN

- connectors and cables may slightly exceed a frequency domain specification limit line
- slight excursions do not necessarily cause system failures as proven by simulation
- introduction of excursion metrices:
 - for return loss: iRL (integrated Return Loss) expected (unreleased specifications)
 - for crosstalk: ccICN (component contribution to Integrated Crosstalk Noise) expected (unreleased specifications) already introduced for PCIe 5.0 CEM (released)

what excursions are more critical, what are less critical?
→ weighting according to power spectrum of PCIe signal

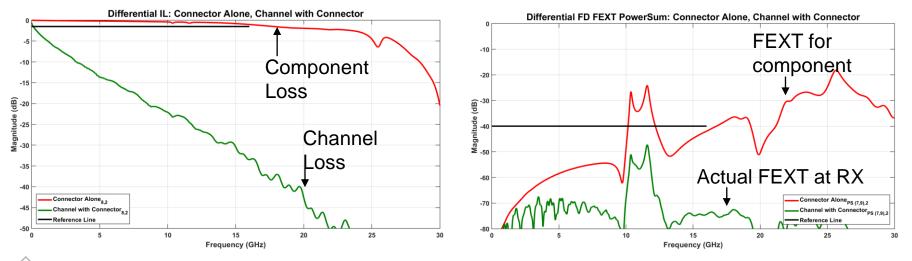

TEST PARAMETERS IN PCIe 5.0 / 6.0 EXAMPLE: PCIe 5.0 / 6.0 INTERNAL AND EXTERNAL CABLES

iRL = dB

 $\sum_{i=1}^{n} W(f_i) RL_{avg}^2(f_i)$

iRL (integrated Return Loss)

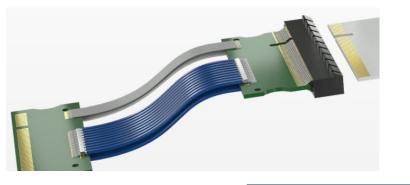
- Integration of averaged return loss after a power weighting filter W(f)
- W(f) represents transferred power for 16 GHz Nyquist signaling



TEST PARAMETERS IN PCIe 5.0 / 6.0 EXAMPLE: PCIe 5.0 / 6.0 INTERNAL AND EXTERNAL CABLES

-2*Kxa*-

- ► Similar to IRL, but also filters response by reference channel loss
 - FEXT and NEXT have different loss coefficients
 - FEXT is attenuated by end to end channel loss. $\sigma_{ICN} = \left[2 \cdot \Delta f \cdot \sum_{f}^{f_{max}} \frac{A^2}{f_b} \cdot PWF(f) \cdot 10^{\left(\frac{PwrSumXt}{10}\right)} \cdot \frac{10^{10}}{10}\right]$
 - NEXT is much shorter (less attenuated)


Rohde & Schwarz

chwarz PCIe 5.0 / 6.0 and IEEE802.3ck Cable Test – Signal Integrity, Performance Parameters, and Automation

NON-STANDARD CONNECTORS AND CABLES

SI requirements for CEM, SFF-TA-1016 and SFF-TA-1032 form factors may not apply to other form factors, such as:

CEM Extender Cables expect to have worse performance than e.g. the smaller SFF-TA-1016

Array Connectors\Cables are more dense and can expect more crosstalk than SFF-TA-1016

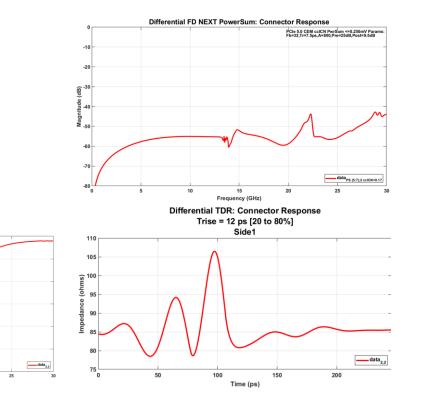
So, what can we do?

STEP 1: FREQUENCY DOMAIN CONSIDERATION

- Other form factors are taller: having more loss and lower resonances, with more pins and noise
- Anecdotal recommendations:

Differential IL: Connector Response

15


Frequency (GHz)

25

- "Rule of Thumb"

10

data

20

Differential RL: Connector Response

Frequency (GHz)

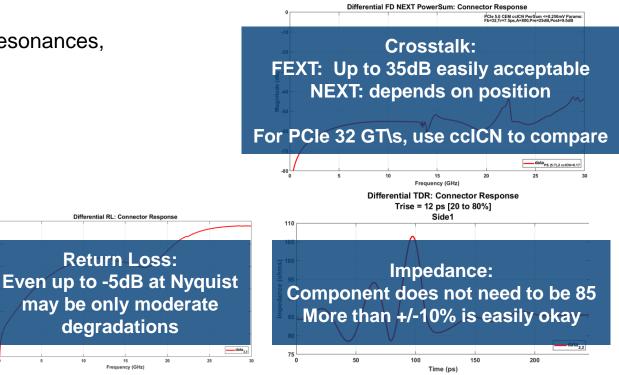
STEP 1: FREQUENCY DOMAIN CONSIDERATION

 Other form factors are taller: having more loss and lower resonances, with more pins and noise

25

Anecdotal recommendations:

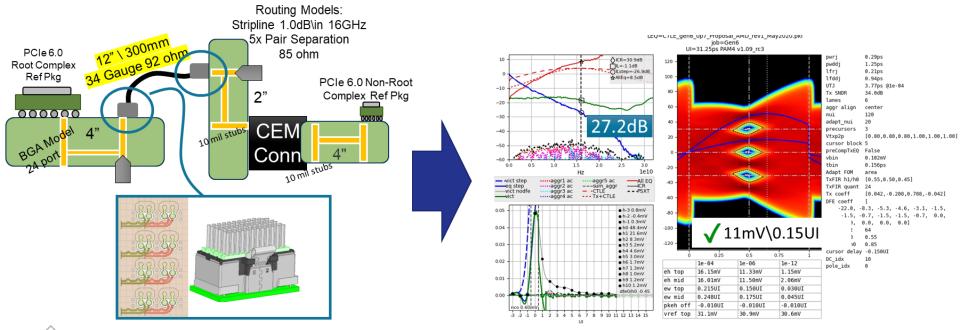
Differential IL: Connector Response


Insertion Loss:

Up to 1.5-2.0 dB reasonable,

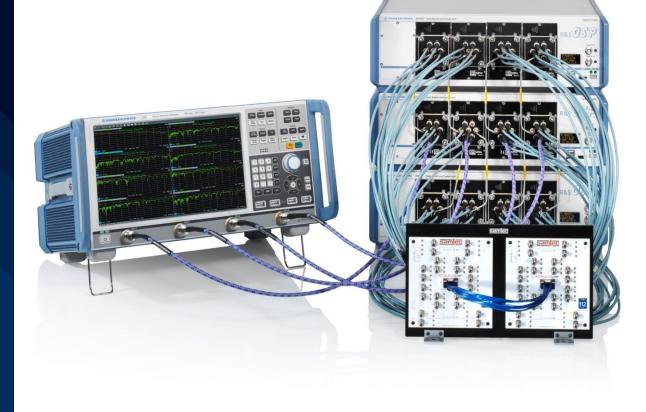
see what PCB budget allows

Frequency (GHz)


- "Rule of Thumb"

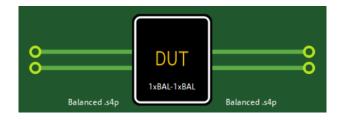
STEP 2: CHANNEL SIMULATION EXAMPLE PCIe 6.0 CABLED TOPOLOGY

► Why simulation?


- Non-Interoperable captive systems, impedances other than 85, specific application models

Rohde & Schwarz PCIe 5.0 / 6.0 and IEEE802.3ck Cable Test – Signal Integrity, Performance Parameters, and Automation

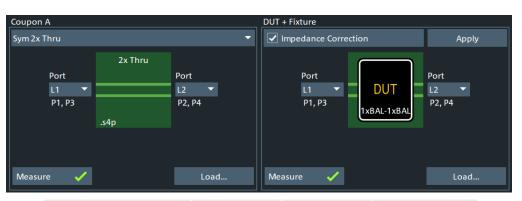
HIGH-SPEED CABLES FOR PCIe 5.0 / 6.0 AND IEEE802.3ck


TEST SOLUTIONS: FIXTURE REMOVAL, TEST AUTOMATION

TEST FIXTURE CHARACTERIZATION R&S DE-EMBEDDING ASSISTANT

Step 1: Topology

- DUT
- Lead-in
- Lead-out


Step 2: Measure/Load

- Coupon(s)

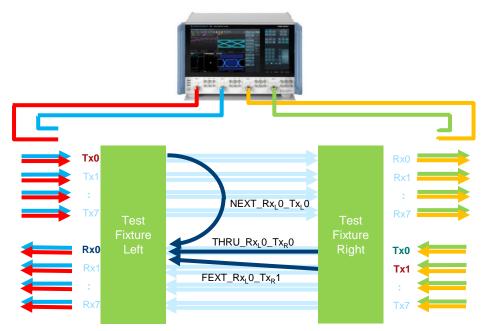
- Total structure

Step 3: Result

- Apply

- Industry accepted modeling algorithms
 - K210 EZD: Eazy De-embedding
 - K220 ISD: In-Situ De-embedding
 - K230 SFD: Smart Fixture De-embedding

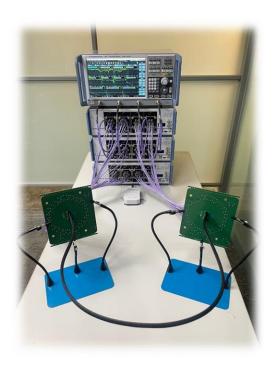
Method	Offset	TRL	Fixture Model De-embed
Correction (kit)	Easy	Complex	Easy
Speed	Fast	Slow	Fast
Accuracy	Poor	Moderate	Best


TEST OF SAMTEC SI-FLY FLYOVER EVALUATION KIT RETURN LOSS, INSERTION LOSS, AND TDR COMPARISON

VERIFICATION OF PCIE 5.0, 6.0 CABLES AND CONNECTORS WITH VECTOR NETWORK ANALYZER

- Required measurements:
 - Insertion loss Sdd21
 - Return loss Sdd11 and Sdd22
 - Near-end crosstalk (NEXT)
 - Far-end crosstalk (FEXT)
- ► Testing with 4 port VNA
 - multiple 4-port measurements
- Postprocessing:
 - Integrated return loss iRL
 - Power sum MDNEXT and ccICN_{NEXT}
 - Power sum MDFEXT and ccICN_{FEXT}
 - Intra-pair skew: EIPS
 - Inter-pair skew (lane-to-lane)

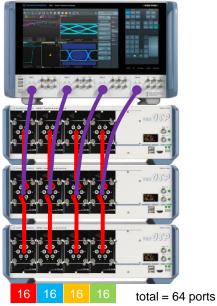
Example PCIe x8 cable


HIGH SPEED INTERFACE TESTING SOLUTION

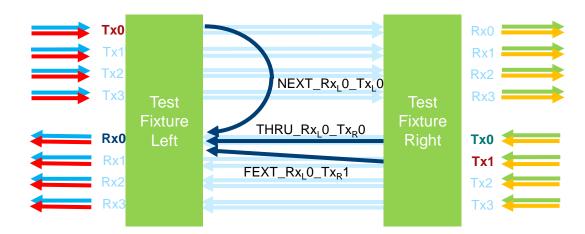
Rohde & Schwarz

ZNrun Option	ZNrun-K410	ZNrun-K411	ZNrun-K440
DUT example	SFP28 QSFP28 SFP56 QSFP56	SFP112 QSFP112 QSFP-DD112 OSFP	GenZ MCIO Riser CEM CDFP
Technology	IEEE802.3bj/by/cd	IEEE802.3ck	PCIe 5.0/6.0
Recommended VNA Frequency	26.5 GHz	50 GHz	43.5 GHz
Fixture de-embedding	Optional	Optional	Mandatory
SI test items	ERL COM	ERL COM	iRL ccICN EIPS

AUTOMATED VERIFICATION WITH VNA AND MULTIPORT SWITCH MATRIX

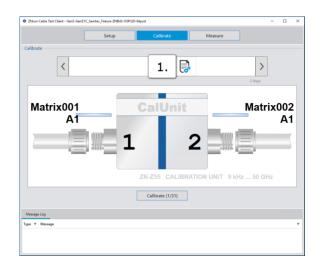

- ► Solution: R&S ZNrun cable test client, VNA, and OSP
 - Predefined topology for multi-lane setup
 - Test plan of PCIe and IEEE802.3
 - Flexible de-embedding
 - Test cases selection
 - Efficient calibration
 - Report generation
 - Data export
 - Automation interfaces

	DE	-/EMBEDDING					
Port	Usa	Usage Touchstone		one File	Interchange Mode		
Fixture left	Dee	eembedding					ard
Fixture right	Dee	embedding			+ 1 + 3	2 4 Standa	ard
Test Case Selecti	on –						
RX Lane	٣	Test Case	•	Execute	Ŧ	TX Lanes	т
		THRU / SKEW / TI	DR			0	
0		NEXT				0,1,2	
		FEXT				1,2	
		THRU / SKEW / TI	DR			1	
1		NEXT				0,1,2	
		FEXT				0,2	
		THRU / SKEW / TI	DR			2	
2		NEXT				0,1,2	
		FEXT				0,1	
		Calculate psNEXT	(L)				
		Calculate psNEXT	(R)				
		Calculate psFEXT	(L)				


VERIFICATION OF PCIE 5.0 / 6.0 CABLES AND CONNECTORS: GENERAL CONSIDERATIONS

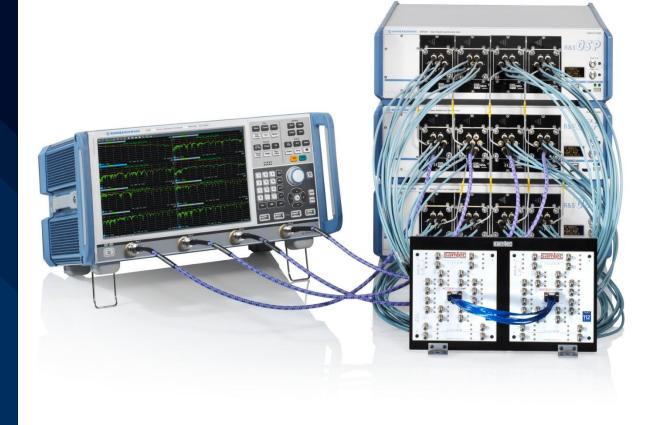
Measurements:

automation with switch matrix: example for PCIe x8


	PCle x4	PCIe x8	PCle x16
number of lanes (Tx + Rx)	4 Tx + 4 Rx	8 Tx + 8 Rx	16 Tx + 16 Rx
number of ports for full testing (all lanes and all crosstalk combinations)	32	64	128
number of 4-port measurements for full testing (all lanes and all crosstalk combinations)	8 x THRU 4 x 4 = 16 x NEXT_L 4 x 4 = 16 x NEXT_R 3 x 4 = 12 x FEXT_L 3 x 4 = 12 x FEXT_R total: 64 4-port meas.	16 x THRU 8 x 8 = 64 x NEXT_L 8 x 8 = 64 x NEXT_R 7 x 8 = 56 x FEXT_L 7 x 8 = 56 x FEXT_R total: 256 4-port meas.	32 x THRU 16 x 16 = 256 x NEXT_L 16 x 16 = 256 x NEXT_R 15 x 16 = 240 x FEXT_L 15 x 16 = 240 x FEXT_R total: 1024 4-port meas.

VERIFICATION OF PCIE 5.0 / 6.0 CABLES AND CONNECTORS: GENERAL CONSIDERATIONS

Calibration:


automation of calibration example for PCIe x4 w. R&S ZNrun

	PCle x4	PCle x8	PCle x16
number of lanes (Tx + Rx)	4 Tx + 4 Rx	8 Tx + 8 Rx	16 Tx + 16 Rx
number of ports for full testing (all lanes and all crosstalk combinations)	32	64	128
number of 4-port measurements for full testing (all lanes and all crosstalk combinations)	64 4-port groups:	256 4-port groups:	1024 4-port groups:
standard calibration (3 connections per 4-port)	64 x 3 = 192	256 x 3 = 768	1024 x 3 = 3072
optimized calibration	31	63	127
Tx0 Tx1 Tx2 Tx3 Tx3 Test Fixture Left	NEXT_RxL0 THRU_RxL0_TX FEXT_RxL0_TxR1	Test Fixture Right	Rx0 Rx1 Rx2 Rx3 Tx0 Tx1 Tx2 Tx3

HIGH-SPEED CABLES FOR PCIe 5.0 / 6.0 AND IEEE802.3ck

PRACTICAL DEMO

Find out more

www.rohde-schwarz.com

www.samtec.com

Thank you!

ROHDE&SCHWARZ

Make ideas real

