Webinar series: 5G Device Testing Journey CHALLENGES TO 5G MMWAVE COMPONENT CHARACTERIZATION

Kuek CY Regional Application for Test and Measurement

ROHDE&SCHWARZ

Make ideas real

5G DEVICE TESTING JOURNEY

Webinar Series

AGENDA

- ► Motivation for mmwave in 5G
- OTA testing becomes the default case
 - Beamforming
 - Near field, Far field, Quiet zone
 - Black box / White box approach
 - DFF, IFF, CATR
- Impacts on UE RF frontend
 - Antenna
 - Power Amplifiers
 - Envelope tracking, DPD
- R&S Solutions
- Demo and Q&A

NEED FOR 5G MMWAVE

High Gigabytes Data Rates

Lower Latency

Higher Capacity

Challenges to 5G mmWave component characterization

5 Rohde & Schwarz

5G NEW RADIO (NR) AIR INTERFACE PARAMETERS

Parameter	FR1 (410 MHz – 7.125 GHz)	FR2 (24.25 – 52.6 GHz)	
Carrier aggregation	Up to 16 carriers		
Bandwidth per carrier	5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 90, 100 MHz	50, 100, 200, 400 MHz	
Subcarrier spacing	15, 30, 60 kHz 60, 120, 240 (not for data)		
Max. number of subcarriers	3300 (FFT4096 mandatory)		
Modulation scheme	QPSK, 16QAM, 64QAM, 256QAM; Uplink also supports π /2-BPSK (only DFT-s-OFDM)		
Radio frame length	10 ms		
Subframe duration	1 ms (alignment at symbol boundaries every 1 ms)		
MIMO scheme	Max. 2 codewords mapped to max 8 layers in downlink and to max 4 layers in uplink		
Duplex mode	TDD, FDD TDD		
Access scheme	Downlink: CP-OFDM; Uplink: CP-OFDM, DFT-s-OFDM (network controlled)		

CHALLENGES FOR 5G MMWAVE

High path loss

Susceptible to interference

High energy consumption

Short range

Rohde & Schwarz

Indoor penetration difficulties

OTA TESTING BECOMES THE DEFAULT CASE

THE NEED FOR OVER THE AIR

Sub-6GHz

cmWave: 10-20 GHz

mmWave: 30-90 GHz

OVERCOMING PATH LOSS ISSUES

Higher frequencies = higher attenuation Higher frequencies = smaller antennas

Friis equation

$$\frac{P_{Rx}}{P_{Tx}} = G_{antenna} \left(\frac{c}{4\pi f d}\right)^{\gamma}$$

 γ = path loss exponent

PathLoss 28 GHz	γ = 2 Free Space	γ = 1.6 to 1.8 Indoor LOS	γ = 2.7 to 3.5 Urban Area
1 m	- 61,4 dB	- 52 dB (k=1,7)	-92,1 dB (k = 3)
10 m	- 81,4 dB	-69 dB	-122,1 dB
100 m	- 101,4 dB	-86 dB	- 151,1 dB
1000 m	- 121,4 dB	-103 dB	- 181,1 dB

BEAMFORMING TECHNIQUE

Antenna systems with a high number of antenna elements, which can be individually controlled in phase and amplitude, enable high antenna gains and beam steering.

11 Rohde & Schwarz

BEAMFORMING TECHNIQUE

BEAMFORMING TECHNIQUE

13 Rohde & Schwarz

USER EQUIPMENT (UE) RF FRONTEND

- Support Beamforming with phase array antenna implementation
- ► High Integration for RF frontend

IMPACTS ON UE RF FRONTEND

5 front end test

CHARACTERIZING RF FRONTEND CHALLENGES

- Over the air testing
 - Beam direction
 - Elimination of RF connectors
 - Far field measurement large chamber required
- Device Calibration and Measurement
 - Ensure correct beam phase and amplitude
 - Any phase difference has a significant influence on beamforming accuracy
 - Characterization of array antenna using modulated signal

CHARACTERIZING RF FRONTEND CHALLENGES

- ► Power amplifier efficiency
 - To achieve desired EIRP
 - Increasing array elements, increasing PA
 - Maintaining power efficiency with many beamforming PA channels

OTA MEASUREMENT

AUT size (D)	FF distance at 3.5 GHz	FF distance at 28 GHz
70 cm	11.4 m	91.2 m
40 cm	3.74 m	29.9 m
15 cm	0.53 m	4.2 m

OTA MEASUREMENT

White box

- Size and position of the antenna known
- ► This size can be taken as D
- White box testing device is a "white box" for the user since position of the antenna is known

 $\frac{2D^2}{\lambda}$

- ► Example @ 30GHz
 - $-\lambda = 1$ cm
 - D= 2cm
 - Far field distance: 8cm

Black box

- Size and/or position of the antenna is unknown
- Entire DUT maximum distance to be considered as D
- Black box testing device is a "black box" for the user
- ► Example @ 30GHz
 - $-\lambda = 1$ cm $\frac{2D^2}{\lambda}$
 - D= 12cm
 - Far field distance: 2.9 m

CATR BASIC THEORY OF OPERATION

QZ size depends on - Size of reflector - Feed antenna properties - Focal length No direct relation between chamber size and QZ size

OTA MEASUREMENT

DFF solution for Whitebox & extreme temperature testing

IFF solution for Blackbox & standard temperature testing

CHARACTERIZING BEAMFORMING COMPONENTS

Beamforming accuracy dependent on phase, amplitude and timing differences of array elements

ARRAY ANTENNA CALIBRATION

- Phase array antenna calibration
 - To correct for relative amplitude and phase offsets
- ► Main challenges
 - Over the air measurement
 - No phase coherent between array antenna and receiver
 - Various calibration methods

ARRAY ANTENNA CALIBRATION METHOD

- Direct Measurement
- ► Measure attenuation and phase over time
 - Switch through all elements sequenctially,
 - Straight forward approach
 - Get absolute information for each element
- No phase coherent required
 - Correction of common frequency error
- Test instrument
 - Signal generator and signal analyzer
 - Vector network analyzer
 - Communication tester

ARRAY ANTENNA CALIBRATION METHOD

- Direct Measurement
- Parallel calibration
 - Use FDMA or CDMA based methodology
 - DUT with multiple processing units
- Retrieve all signals with single receiver
 - Use DSP to discriminate signal sources
- Requires capability to play different signal per element
- ► Requires transmission of different signal per element

ARRAY ANTENNA CALIBRATION METHOD

- In-direct Measurement
- Measure RX power for two active elements
 - Two active elements
 - Change relative phase between elements
 - Get relative mag/phase setting per element
- Requires possibility to stimulate 2 elements at a time
- ► No phase coherent required
- ► Test instruments
 - Signal generator and signal analyzer

POWER AMPLIFIER (PA) TECHNOLOGY

Latest technology: GaN

- Power density: 8 times of GaAs
- ► Efficiency: 40 to 70 % up to GaAs
- Manufacturing cost: 2-3 times of GaAs for the start, but will go down significantly
- ► Higher integration possible thanks smaller package and higher power density
- Excellent suited for wideband applications and higher frequencies

EFFECTS OF ANTENNA ARRAY ON PA POWER

- ► Battle of Technologies
- ► GaN vs GaAs vs SiGe

Beamforming system at 28 GHz with 60dBm EIRP

EFFICIENCY AND LINEARITY ENHANCEMENTS FOR RF FRONTENDS

- Predictive Post-Correction methods for classic RFFE
- Construct the signal from 2 (or more) efficiently generated components.
- ► Three known basic types, plus their hybrids:
 - Envelope = Multiplication
 - Outphasing = Summation
 - Doherty = Reference
- Digital Pre-Distortion (DPD) method

ENVELOPE TRACKING

30

Constant DC supply

Modulated DC supply

ENVELOPE TRACKING TEST CHALLENGES

- Precise synchronization
- Real time adjustment
- Distortion measurement

DIGITAL PRE-DISTORTION (DPD)

DIGITAL PRE-DISTORTION (DPD) TEST CHALLENGES

- mmWave Signal with high bandwidth
- ► Varying DPD modeling
- Memory based DPD

DOHERTY AMPLIFIERS

- Efficiency enhancement method
- Two (or more) amplifiers that interact through a special combining network
- ► Test Challenges
 - Performance driven by difference between the main and auxiliary curves.
 - Misalignment of signals arriving at the output
 - Amplitude and phase matching through the two paths

Classic Doherty Amplifier

Dual-input Doherty Amplifier

R&S SOLUTIONS

5 front end test

R&S SOLUTION FOR ENVELOPE TRACKING

- **RF** analysis
- Voltage / current analysis
- **Distortion analysis**

R&S®SMW-K540 Envelope Tracking

- Envelope to RF delay adjustment
- 1 GHz envelope bandwidth
- Realtime envelope calculation and shaping (K540) or user-defined envelope signal (dual ARB)
- Differential or single-ended analog I/Q OUT

RF signal

R&S SOLUTION FOR DIGITAL PRE-DISTORTION

R&S SOLUTION FOR DOHERTY

R&S®SMW-K546 Doherty

Digital Doherty						_ ×
General S Power + Phase C	haping lassic Dohert	,				
				Set To Defau	D III	Save
	PEP	-30.00 dBm				
1/0	Level	-30.00 dBm				1/0.4
I/Q _{DPD} A —	Dig Att	30.000 dB	Couple Dig Att 🛛 🗸			1/Q A
	PEP	-30.00 dBm	Shap	ing	PEP -30.00) dBm
	Level	-30.00 dBm	Power	Phase	Level -30.00	dBm
	Dig Att	30.000 dB	 On	<mark>√</mark> On		I/Q B
	Phase Offset	0.00 deg				

- Couple two RF paths with precise power, phase and timing alignment
- Power split and input-power dependent phase delta in real time
- Realtime shaping and DPD

Unprecedented insight into sensitivities and performance tradeoffs to help choose the best input split design

R&S SOLUTION FOR ANTENNA TESTING

Extreme temperature test

Radiation patterns of miniaturized **antennas** can be influenced by temperature, so thermal diagnosis is gaining traction, especially in AiP. The R&S®ATS1000 can be retrofitted with a temperature testing option to perform fast and precise 3D thermal measurements from –20 °C to +85 °C.

R&S SOLUTION FOR ANTENNA TESTING

	ATS1000	ATS800B	ATS800R	ATS1800C
Dim. (WxDxH)	0.85 x 1.5 x 2	1.2 x 0.6 x 0.8	0.8 x 1 x 2.1	0.9 x 1.5 x 2.1
Application	R&D, antenna measurements	Benchtop R&D, academic, research institutes	R&D, pre- conformance (RF, PQA)	Conformance (RF, RRM), R&D
Approach	White box DFF/NF	Black box CATR	Black box CATR	Black box CATR
Freq. range	18-87 GHz	18-50 GHz	18-50GHz	6-87 GHz
Quiet zone	Ø 4 cm	Ø 20 cm	Ø 20 cm	Ø 30 cm
Positioner	3D conical cut	2D positioner(opt.)	3D Az over El (opt.)	3D Az over El
Shielding	>50dB	-	>40dB	100dB
Extreme Temp.	3D	no	1D	3D

10 Rohde & Schwarz

KEY LEARNINGS

- Beamforming changes the world for RF frontends
- ► Much higher integration on all fronts needed and will come
- OTA become the go to method for testing in mmWave
- ► R&S is the right partner for 5G RF component and frontend tests
 - Multiple chamber solution for OTA measurement
 - Antenna measurement based on CW and modulated signal
 - Improvement of Amplifier efficiency using Envelope Tracking, Digital Pre-Distortion and Doherty architecture