

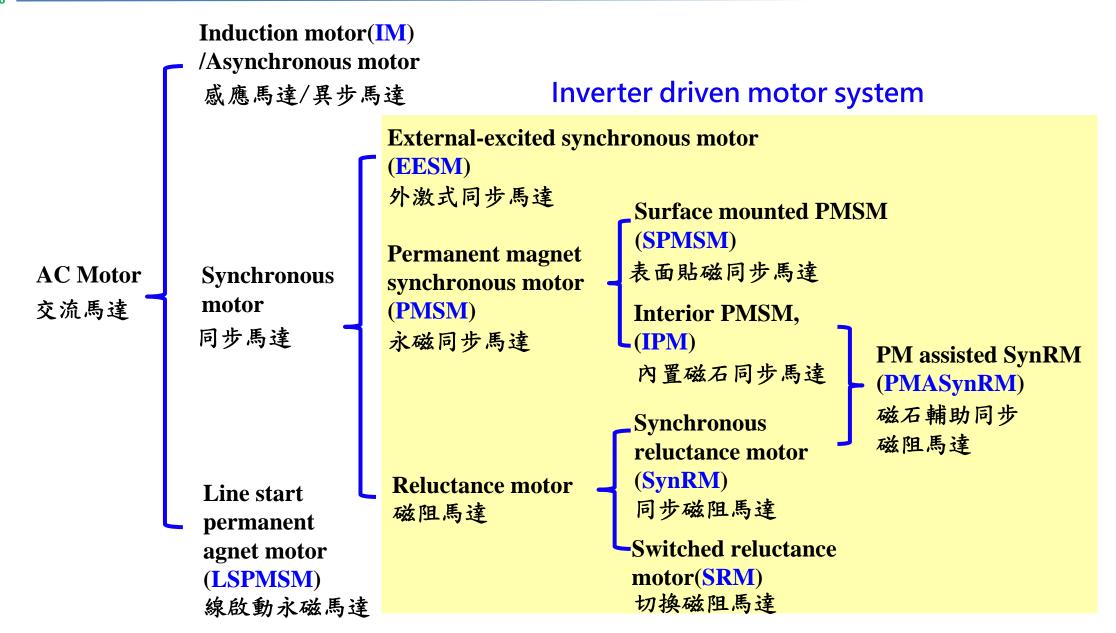
永磁同步馬達的等效電路模型及電氣參數量測

The equivalent circuit model and electric parameters measurement of permanent magnet synchronous motors (PMSM)

講師 :臺北科技大學 黃明熙教授

助教 :許佑澤

時間:2022年4月21日


- 1. 交流馬達介紹
- 2. 永磁同步馬達的特性說明
- 3. 永磁同步馬達的等效電路
- 4. Y接相等效電路之參數量測方法

無載反電動勢、電阻、電感及Hall sensor對位

5. 結論

交流馬達介紹 - 分類

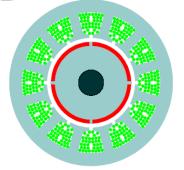
- □依據驅動電壓來源
- ✓ Line start motor
 - 三相/單相電源直接驅動,如IM及LSPMSM。
- ✓ Inverter (adjustable speed drives, ASD) driven motor
- *由功率晶體、感測元件及微處理器或專用IC產生可變電壓(Variable voltage)及可變 頻
- 率 (Variable frequency),VVVF,之電源來驅動馬達,如IM, Synchronous motor;
- *efficiency, fast response, accuracy control and high speed operation 為訴求重點;
- *目前馬達只有約17%裝置變頻器,因此提升馬達系統效率,仍有很大的成長空間。

交流馬達介紹 - 分類

□依據構造

交流馬達 (高效率、耐用及維護成本低)

直流馬達


感應馬達

磁石

- *控制較複雜・需轉子磁場 位置感測元件
- *系統目前材料成本較高
- *馬達有退磁之風險
- *體積小,功率密度高
- *磁石使用之稀土族材料屬 戰略物資

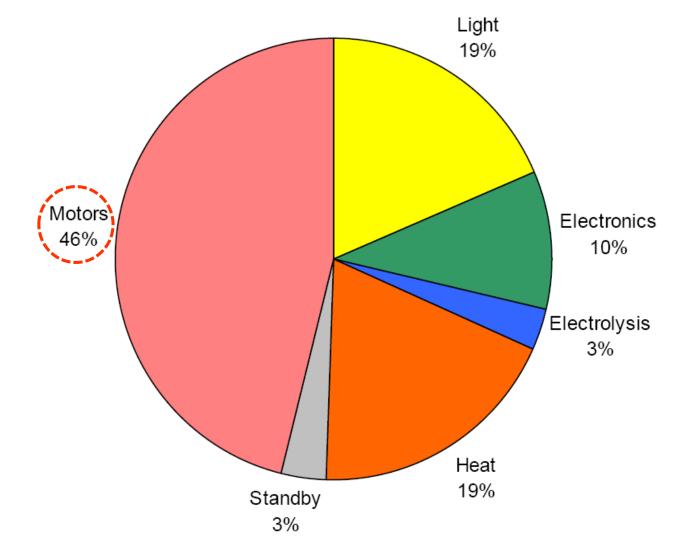
- *控制簡單、可省略速度感測元件
- *體積較大,需處理碳刷衍生之問題
- *需克服轉子散熱之問題

交流馬達介紹 - 特性比較

永磁同步馬達 感應馬達 磁阻馬達 Permanent Magnet Synchronous Motor Reluctance Motor Induction Ferrite Magnet Rare-earth Motor SynRM SRM Magnet Axial-type Radial-type Stator Structure Rotor Structure 0 X 體積 Size Features for Industrial Use 0 0 0 效率 Efficiency X 成本 × 0 0 0 0 0 Cost 噪音 0 0 0 0 Noise X 總評 0 0 0 Total X

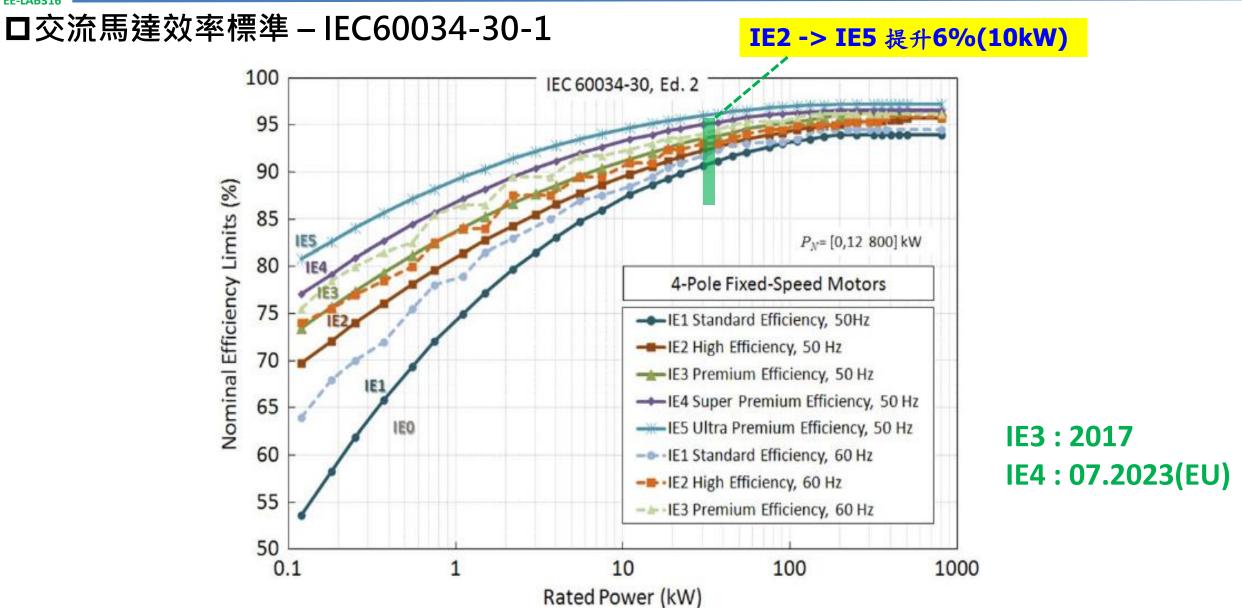
Source: Hitachi

□以用電設備區分之用電量分佈,馬達用電佔整體用電的46%左右!


國際常用之高效率馬達標準

馬達

- *NEMA MG1
- *IEC60034-3-1
- *GB18613-2012
- *JIS C3034-30


馬達驅動器

*IEC60034-30-2

Source: Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems

Ref : Beyond Induction Motors—Technology Trends to Move Up Efficiency

□Ecodesign requirements(生態設計指令) –馬達及可變速驅動器 的規範

- ✓歐盟(EU)目前使用80億(8 B)馬達,所消耗能源約佔歐盟(EU)電力的50%,馬達節能是 提升能源使用效率的關鍵;
- ✓ 自2021年7月起,於歐盟(EU) 使用0.75kW~1000kW的三相馬達皆須滿足IE3;
- ✓ 自2023年7月起,於歐盟(EU) 使用75kW~200kW的三相馬達皆須滿足IE4;

Source: https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/energy-efficient-products/electric-motors_en

- □ 2021年7月1日起
- ✓ 取消過去使用IE2馬達及馬達驅動器(變頻器)替代IE3之方案;
- ✓馬達需提供部分負載的損失(效率)資訊;

Source: Ten things you need to know about Ecodesign, Danfoss

□馬達驅動系統定義 – EN50598 >> IEC 61800-9

效率規範已由馬達延伸到馬達+驅動器

市場機制

New terms and definitions in EN 50598

驅動器/變頻器

PDS

驅動器+馬達

+傳動機構

Extended Product

The entire system comprising the drive control, motor power transmission and the driven load machine.

Driven Equipment

The actual load machine, including the mechanical power transmission by gear units or belts.

Motor System

驅動器+馬達

Motor plus Motor Control System

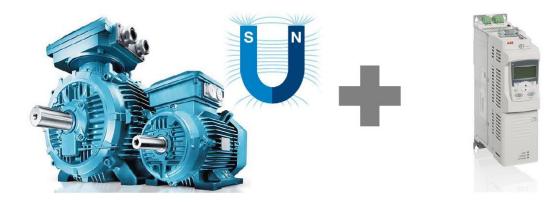
The combination of the drive control and motor including the motor cable, regardless of the motor technology. (PDS / Power Drive System = CDM + Motor)

Motor Control System

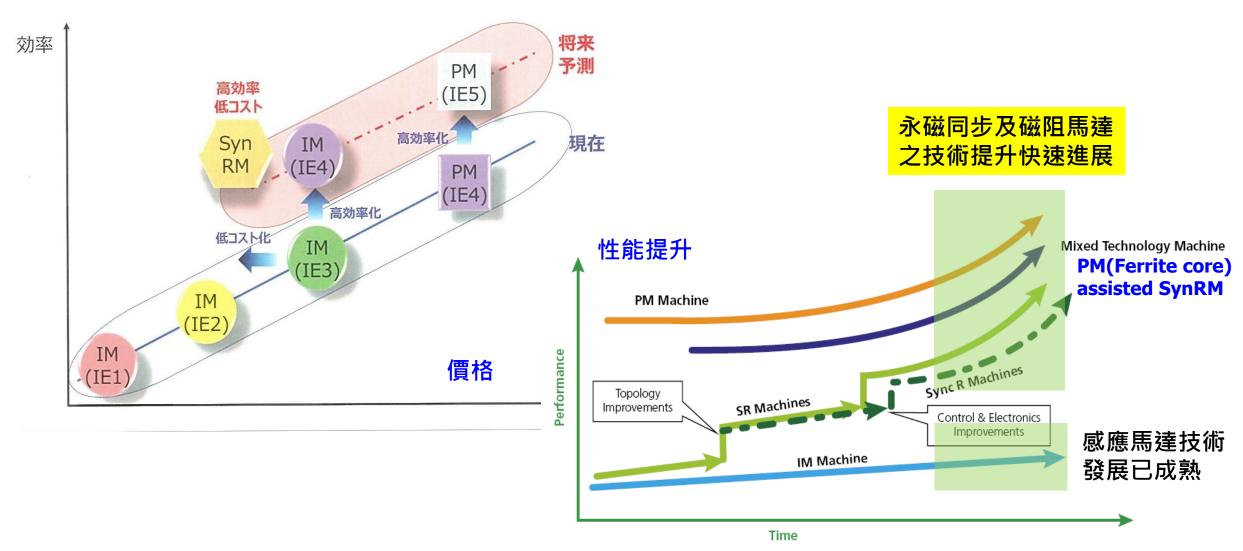
BDM: Basic Drive Module **CDM** (Complete Drive Module) or **Motorstarter** CDM = frequency inverter and including all necessary auxiliary components and equipment.

驅動器+馬達+ 傳動機構+負載

Ref: NORD drivesystems


- □ABB IE4 對策
- ✓馬達+驅動器
- ✓稀土PMSM, IPM
- ✓SynRM, 非稀土馬達 PMASynRM (IE5)

IE2 Induction motor


IE4 Synchronous reluctance motor - magnet-free

IE4 Permanent magnet motor – rare earth

□IE4及IE5的馬達趨勢 >> 仍以永磁同步馬達(PM)為主

- 1.交流馬達介紹
- 2. 永磁同步馬達的特性說明
- 3. 永磁同步馬達的等效電路
- 4. Y接相等效電路之參數量測方法

無載反電動勢、電阻、電感及Hall sensor對位

5. 結論

□同步框主導方程式

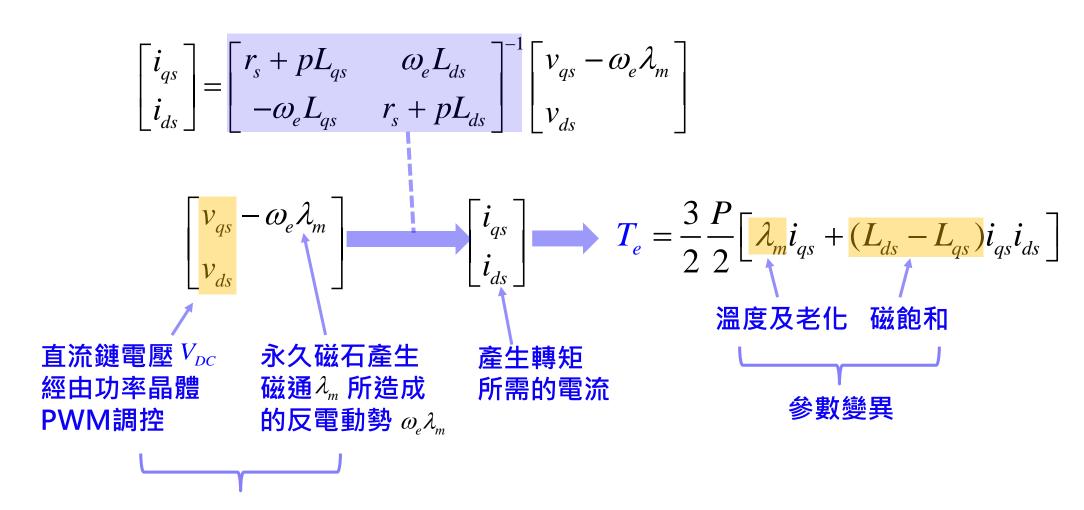
同步框所呈現的電氣量皆可視為直流成分

電壓方程式

$$\begin{bmatrix} v_{qs} \\ v_{ds} \end{bmatrix} = \begin{bmatrix} r_s + pL_{qs} & \omega_e L_{ds} \\ -\omega_e L_{qs} & r_s + pL_{ds} \end{bmatrix} \begin{bmatrix} i_{qs} \\ i_{ds} \end{bmatrix} + \begin{bmatrix} \omega_e \lambda_m \\ 0 \end{bmatrix}$$

輸出轉矩方程式

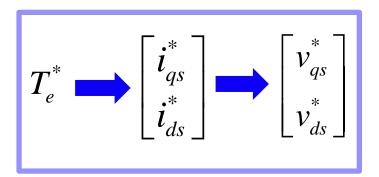
$$T_{e} = \frac{3}{2} \frac{P}{2} \left[\lambda_{m} i_{qs} + (L_{ds} - L_{qs}) i_{qs} i_{ds} \right] = \frac{3}{2} \frac{P}{2} \lambda_{m} i_{qs} + \frac{3}{2} \frac{P}{2} (L_{ds} - L_{qs}) i_{qs} i_{ds}$$


$$= f(i_{qs})$$
電磁轉矩
磁阻轉矩

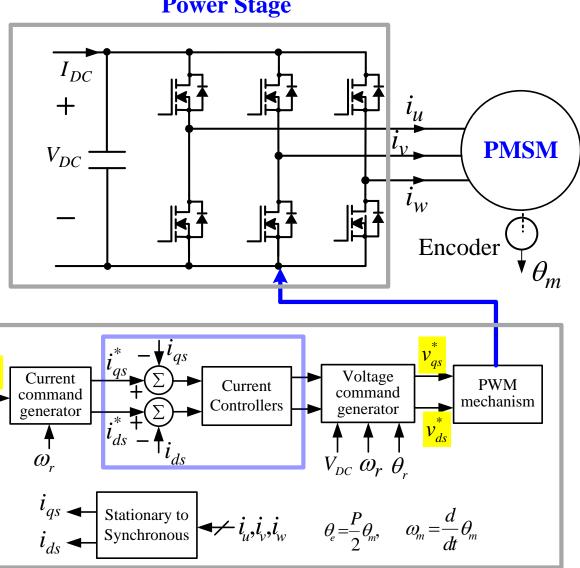
- 一般多期待以 i_{qs} 來控輸出轉矩
 - ,此時 i_d 。多先設為定值

□馬達輸出轉矩原理-向量控制

以基頻及線性系統為核心之轉矩產生機制,因此不考慮磁飽和之影響!!

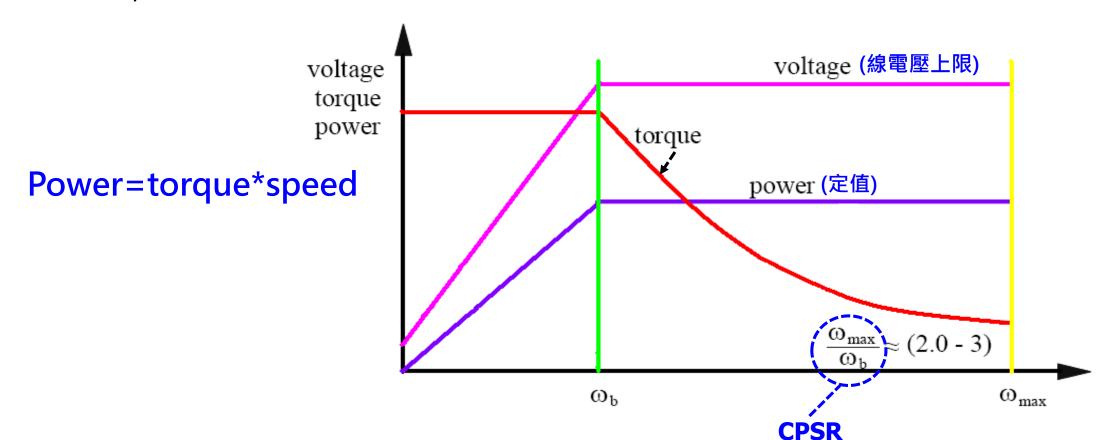


Velocity

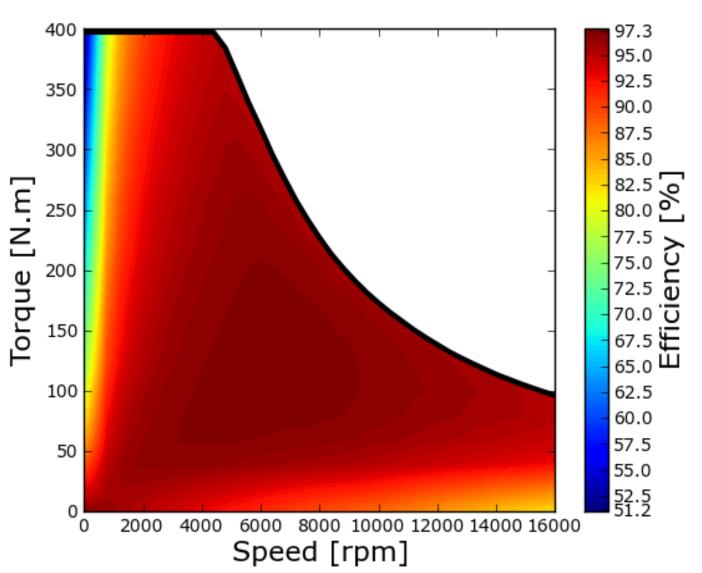

Controller

 ω_r

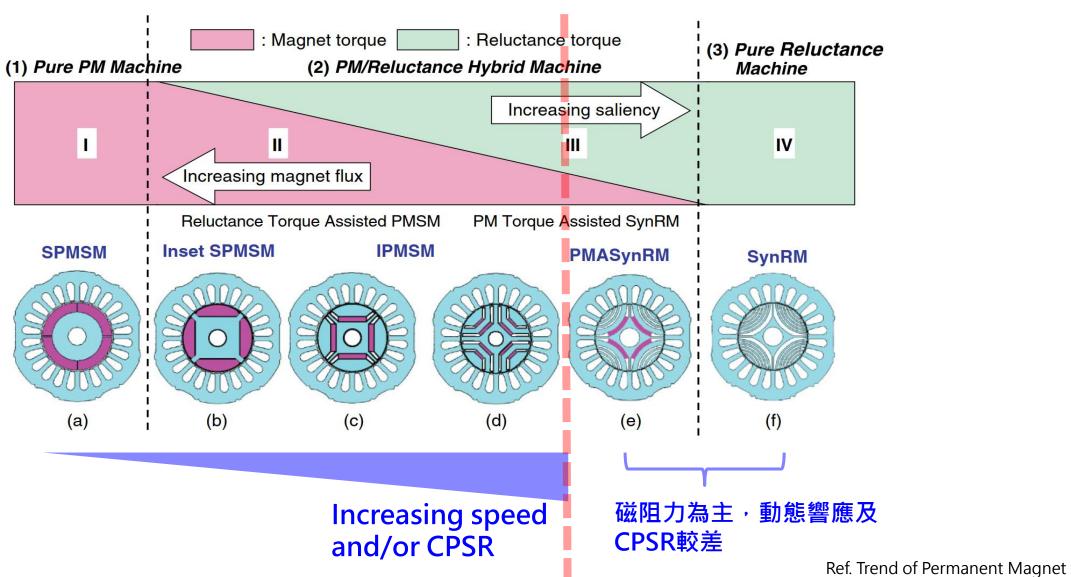
□驅動控制架構



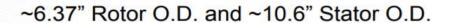
- □馬達驅動系統之關鍵性能(Key performance of motor drive system)
- ✓ 轉速控制比 Speed control ratio
- ✓ 轉速調節Speed regulation
- ✓ 響應時間Response time
- ✓ 輸出特性Power (torque vs speed) capability
- ✓ 定功率輸出之速度比例Constant power speed ratio(CPSR)
- ✓ 單位電流之最大轉矩Maximal torque per ampere(MTPA)
- ✓ 高效率區High efficiency region


- □馬達輸出特性 轉矩 vs. 轉速 (Torque speed curve, TN curve)
- ✓ TN curve為額定線電壓下之最大連續輸出邊界(考慮熱平衡)
- ✓ CPSR:

Constant power speed ratio 定功率輸出之速度比例,用來說明定功率輸出之區間,作為不同負載 選配馬達之參考;一般電動動力馬達及工具機用主軸馬達多需具備較寬廣的定功率區。



- □馬達輸出特性 效率圖(Efficiency map)
- ✓ 低速高轉矩輸出,通常效率較低
- ✓ 馬達於經常操作區,效率愈高愈好
- ✓ 高效率區間是依據使用需求來設計!


□依轉矩產生方式

永磁同步馬達

□IPM 演進

~5.53" Rotor O.D. ~8.47" Stator O.D.

2002 Prius - 3.5" stack 33 kW, 274VDC, 6000 RPM

2004 Prius - 3.3" stack 50kW, 500VDC, 6000 RPM

2010 Prius - 2" stack 2017 Prius - 2.4" stack 60kW, 650VDC, 13000 RPM 53kW, 600VDC, 17000 RPM

'02,'04, and '10 stator laminations have very similar OD/ID with 48 slots

Hair pin

Stranded round wire

□外激式同步馬達 External-excited synchronous motor (EESM)

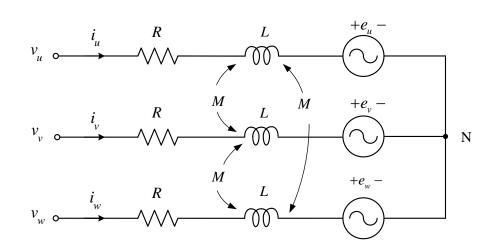
✓ 容易達到高轉速區之操作,但低速輸出轉矩不易提升

	Asynchronous Motor	Internal perm. Motor	SSM
Principle			
Large speed range with constant power	SO	YES	YES
Magnet needed	No	Yes, 1.5 kg/100 kW Peak	NO
Disadvantage	Poor Power Curve	Magnets	Construction
Advantage	Construction	Good Power Curve	No Magnets, Good Power Curve
Rotor			

Ref. Renault ZOE

Ref. BMW iX3

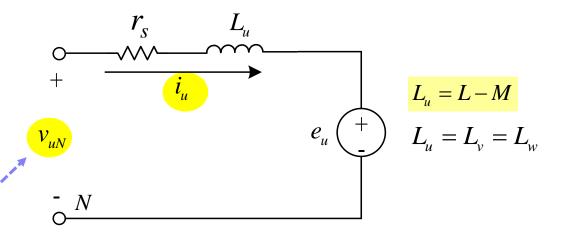
- 1. 交流馬達介紹
- 2. 永磁同步馬達的特性說明
- 3. 永磁同步馬達的等效電路
- 4. Y接相等效電路之參數量測方法


無載反電動勢、電阻、電感及Hall sensor對位

5. 結論

永磁同步馬達的等效電路-靜止框

□理想條件下之等效電路 > 三相平衡及無損失


$$\begin{bmatrix} v_{uN} \\ v_{vN} \\ v_{wN} \end{bmatrix} = \begin{bmatrix} R & 0 & 0 \\ 0 & R & 0 \\ 0 & 0 & R \end{bmatrix} \begin{bmatrix} i_u \\ i_v \\ i_w \end{bmatrix} + \begin{bmatrix} L & M & M \\ M & L & M \\ M & M & L \end{bmatrix} p \begin{bmatrix} i_u \\ i_v \\ i_w \end{bmatrix} + \begin{bmatrix} e_u \\ e_v \\ e_w \end{bmatrix}$$

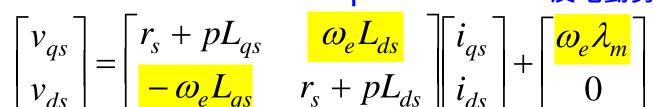
$$\begin{bmatrix} v_{uN} \\ v_{vN} \\ v_{wN} \end{bmatrix} = \begin{bmatrix} R & 0 & 0 \\ 0 & R & 0 \\ 0 & 0 & R \end{bmatrix} \begin{bmatrix} i_u \\ i_v \\ i_w \end{bmatrix} + \begin{bmatrix} L-M & 0 & 0 \\ 0 & L-M & 0 \\ 0 & 0 & L-M \end{bmatrix} p \begin{bmatrix} i_u \\ i_v \\ i_w \end{bmatrix} + \begin{bmatrix} e_u \\ e_v \\ e_w \end{bmatrix}$$

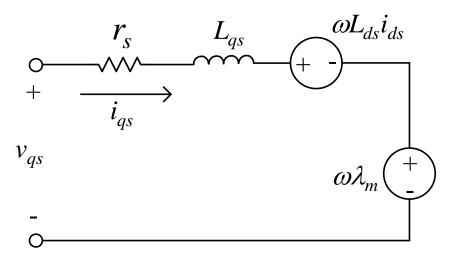
$$T_e = \frac{e_u i_u + e_v i_v + e_w i_w}{\omega_{rm}} \qquad v_{xN} = v_x - v_x$$

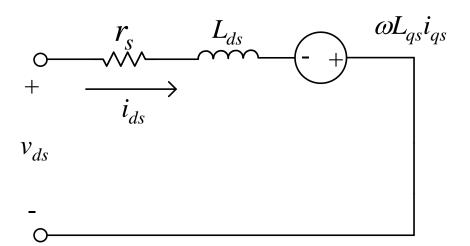
$$x = u, v, w$$

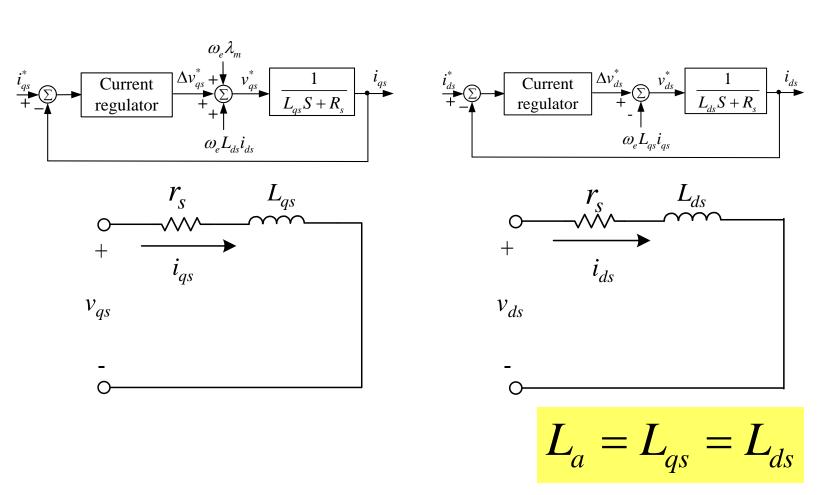
U相等效電路

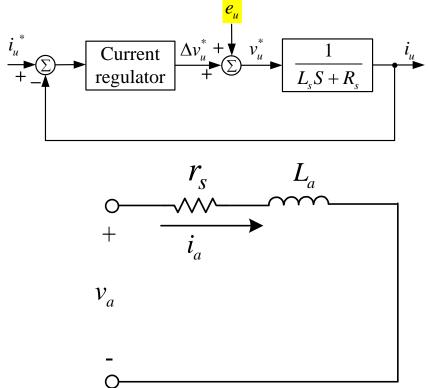
可量測量: v_{uN} , i_u


如何取得中性點N?


永磁同步馬達的等效電路-同步框


$$\begin{bmatrix} v_{qs} \\ v_{ds} \end{bmatrix} = \begin{bmatrix} r_s + pL_{qs} \\ -\omega_e L_{qs} \end{bmatrix}$$

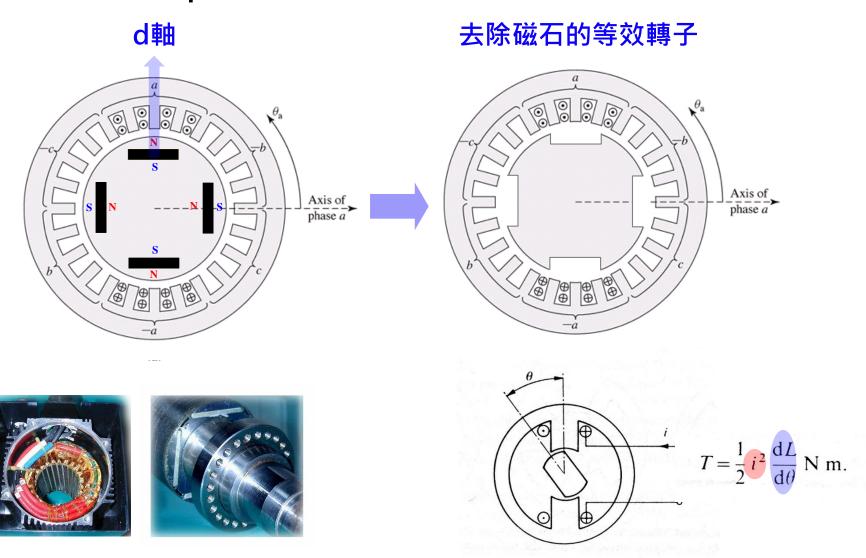




永磁同步馬達的等效電路 – SPMSM

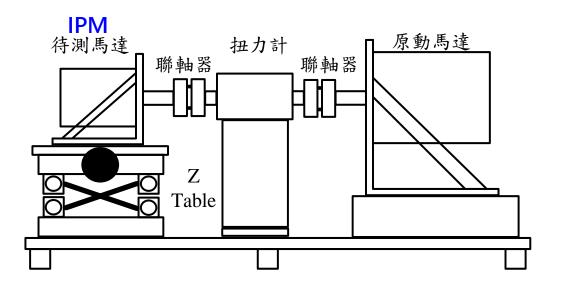
同步框 Decoupled及去除反電動勢 Decoupled 等效電路

靜止框 去除反電動勢之等效電路

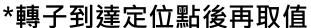


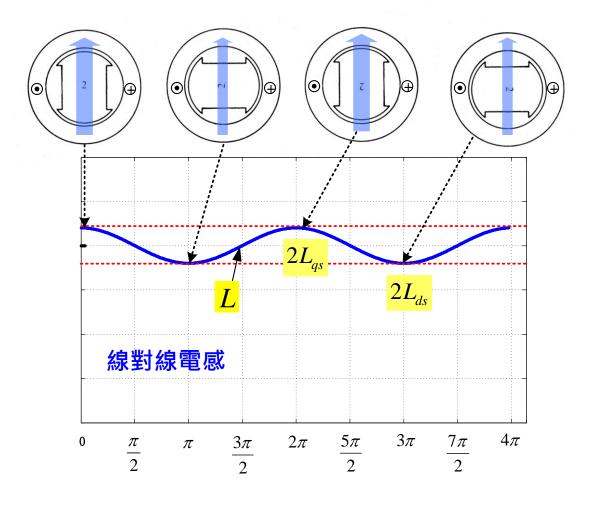
永磁同步馬達的等效電路 – IPM

□磁阻力來源 – 凸極(Salient pole)效應



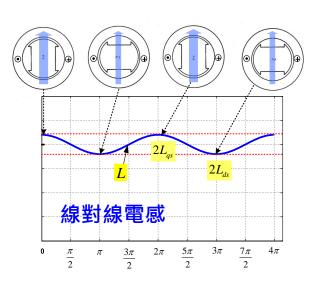
永磁同步馬達的等效電路 - 同步框(IPM)

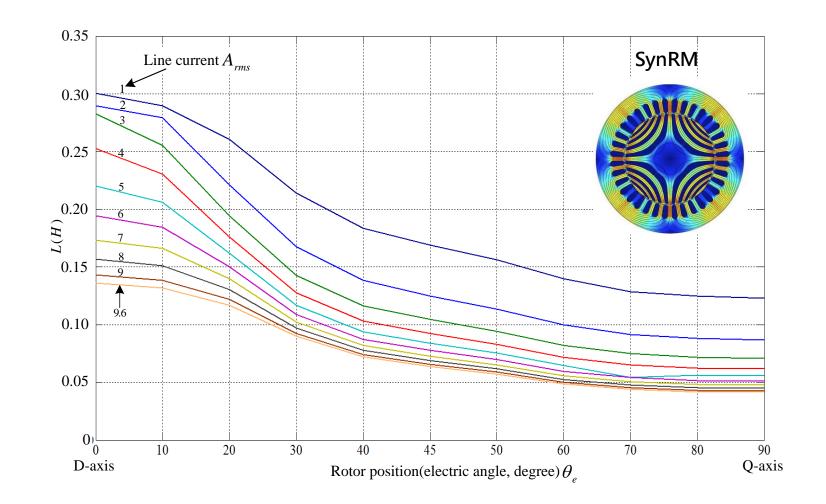

□理想的電感量測方法


原動馬達以位置控制方式帶動待側馬達(IPM),以LCR meter量測線對線電感再除以2, 即為相電感!

量測注意事項

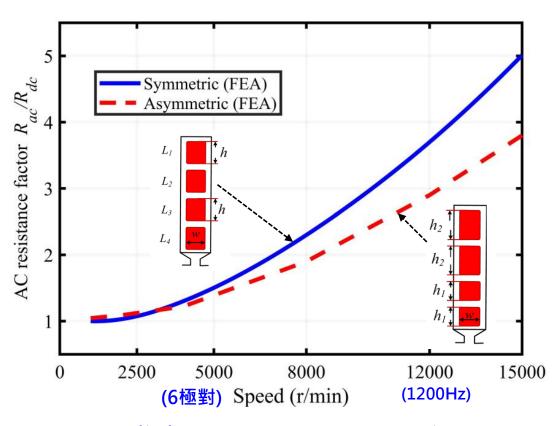
*原動馬達轉動速度愈低愈好,以免 反電動勢損壞LCR meter





永磁同步馬達的等效電路

□電感飽和現象(SynRM)


永磁同步馬達的等效電路-相電阻 vs. 頻率

Hairpin 優點

- *較低的低頻電阻
- *高佔槽率
- *較佳散熱特性
- *容易自動化製造

Ref. Why 1% efficiency improvement means so much

Skin (趨膚) effect及proximity(鄰近) effect 使交流電阻隨將基頻操作頻率提高而大幅上升,導致馬達高速銅損提高!

Ref. Asymmetric Bar Winding for High-Speed Traction Electric Machines

- 1. 交流馬達介紹
- 2. 永磁同步馬達的特性說明
- 3. 永磁同步馬達的等效電路
- 4. Y接相等效電路之參數量測方法 無載反電動勢、電阻、電感及Hall sensor對位
- 5. 結論

Y接相等效電路之參數量測方法

□永磁同步馬達的通用電氣參數

			永磁同步馬達 電氣參婁	效表	
項目	單位	數值	項目	單位	數值
額定相電壓	Vrms		相電阻	Ohm	
額定相電流	Arms		D軸電感	H or mH	
額定轉速/ 最高轉速	rpm		Q軸電感	H or mH	
額定轉矩	Nm		無載相反電動勢 @1000 rpm	Vrms	提供波形圖
額定功率	kW or W		無載相反電動勢諧波 @1000 rpm	Vrms or % of 基頻	提供圖
額定點效率	%		相反電動勢常數(Ke)	量測 Vrms/rpm, 公制單位 Vrms/(rad/sec) or Vpeak/(rad/sec)	
功率因數			轉矩常數(Kt)	Nm/Arms or Nm/Apeak	
轉子極數			位置感測器對位方式		提供圖
位置感測器 型式及解析度	Pulses/rev. or				

主要項目之量測複雜度 與使用需求有關 設計驗證、建立模擬環境及控制有關

項目	量測設備	
相電阻	低阻計、直流電源供應器、LCR 測試儀、示波器	
D軸電感	LCD 測試儀,再法制力測試計(MAC Cot)	
Q軸電感	LCR 測試儀、馬達動力測試計(M-G Set)	
無載相反電動勢		
@1000 rpm	Mixed domain 示波器、馬達動力測試計	
無載相反電動勢諧波	IVIIXEU UOIIIaIII 小汉格· 为连到刀则武司	
@1000 rpm		
相反電動勢常數(Ke)	由無載相反電動勢推估	
轉矩常數(Kt)	由 Ke 推估	
位置感測器對位方式	Mixed domain 示波器、馬達動力測試計	

■Mixed domain 示波器

- ✓ 高解析度
- ✓ 具FFT(frequency domain)

□R&S RTO64

- ✓ 600MHz ~ 6GHz bandwidth
- √ 1 million waveforms per second
- ✓ Sample rate up to 20 G sample/s
- √ 16 bits resolution (high definition mode)
- ✓ Fast Fourier transformation (FFT)

□低阻計

- ✓ Measurement rage = $10mΩ \sim 1000MΩ$
- ✓ Basic accuracy ± 0.006 % rdg. ± 0.001 % f.s.
- ✓ Maximum resolution= $10n\Omega$
- ✓ Measurement speed=FAST (2.2ms)

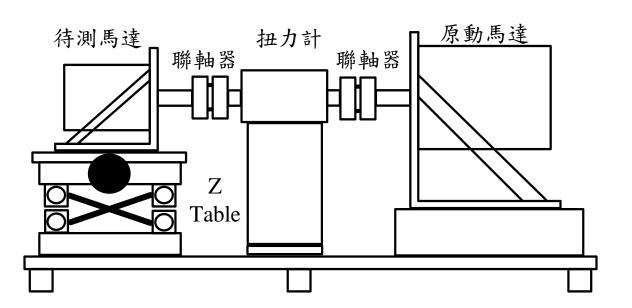
```
/ MED (50Hz: 21ms, 60Hz: 18ms)
```

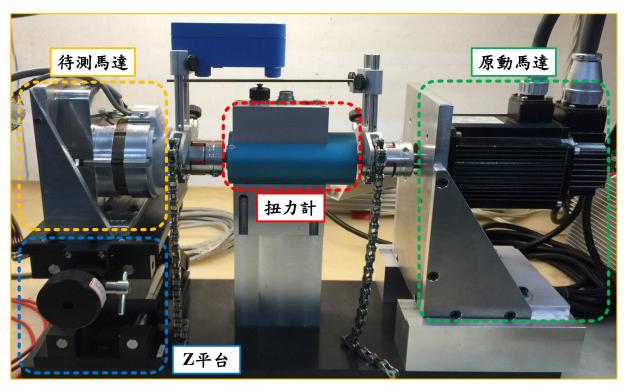
/ SLOW1 (102ms) / SLOW2 (202ms)

□LCR測試儀

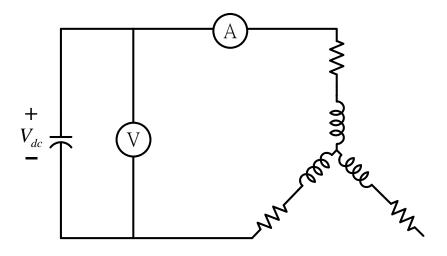
- ✓ Basic accuracy ±0.05%
- ✓ Measurement time : Fast=70ms

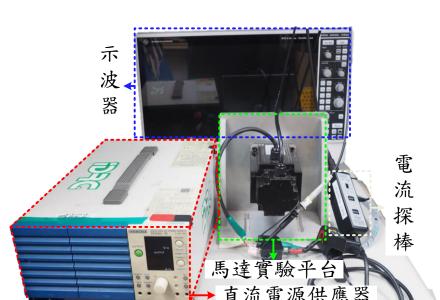
: Medium=125ms


: Slow = 0.7ms

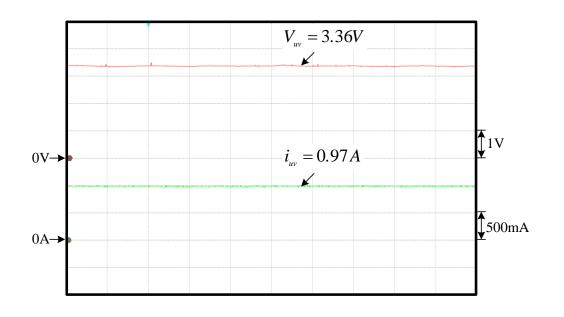

- ✓ Measurement rage of $R=0.01mΩ\sim100MΩ$
- ✓ Measurement rage of C=0.01pF~100mF
- ✓ Measurement rage of L=10nH~100kH
- ✓ Measurement frequency=20Hz~200kHz

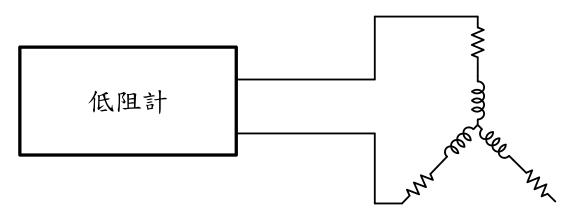
□馬達動力測試計(Motor-Generator Set)


扭力計


額定轉矩:10 Nm

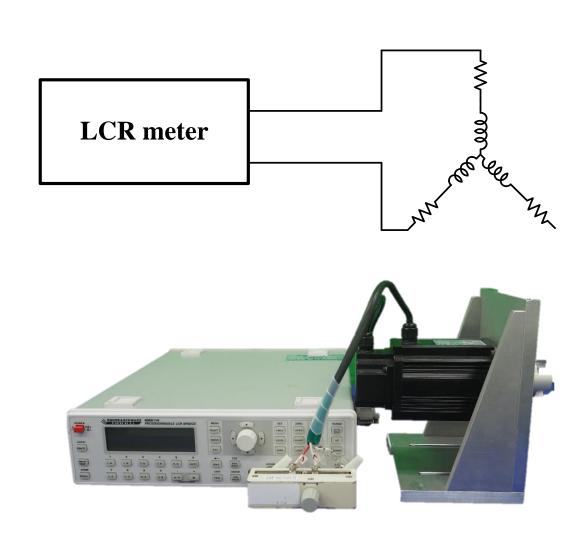
額定轉速: 20000 rpm

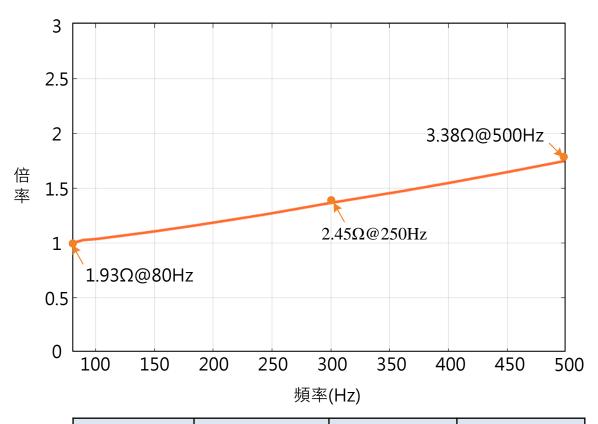

□相電阻(直流電阻)


歐姆定律

	線對線電壓	線對線電流	線對線電阻
UV相	3.36V	0.97A	3.46Ω
VW相	3.36V	0.96A	3.50Ω
WU相	3.37V	0.97A	3.47Ω
立拉佐	2.400	+11 商加佐	1 740
上 平均值	3.48Ω	相電阻值	1.74Ω

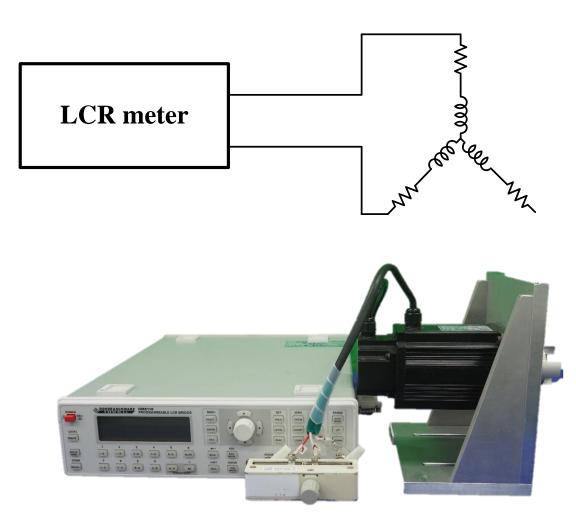
□相電阻(直流電阻)



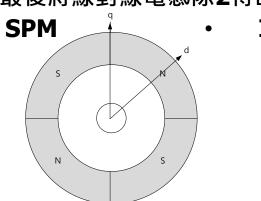

	線對線電阻	
UV相	3.46Ω	
VW相	3.41Ω	
WU相	3.41Ω	

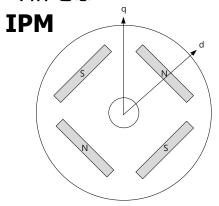
線電阻值 平均值 3.43Ω	相電阻值	1.71Ω
-------------------	------	-------

□相電阻(交流電阻)



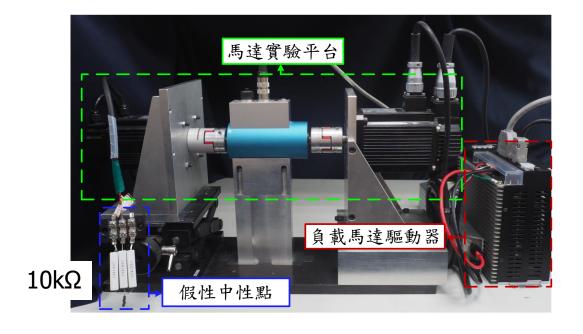
	直流	80Hz	500Hz
相電阻	1.74Ω	1.93Ω	3.38Ω
倍率		1.11	1.94

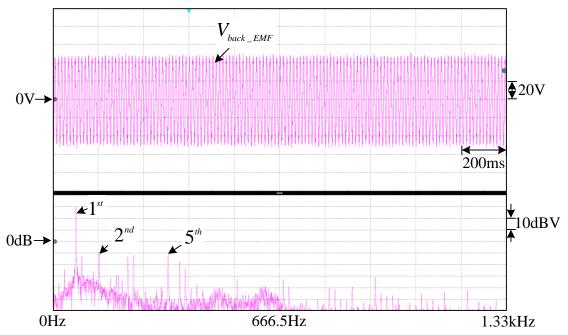



□相電感(1kHz)

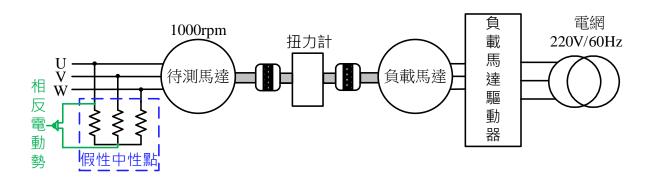
✓ 測試方法

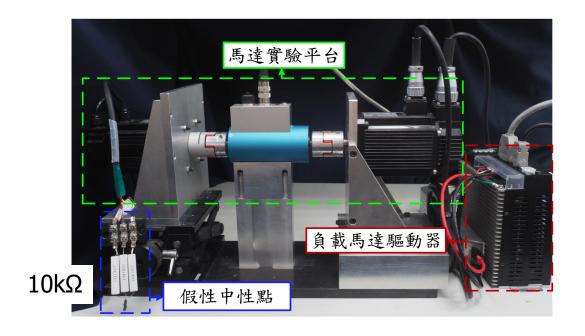
- ·轉動轉子取出最大與最小值·即可得q軸以及d軸電感
- 測試時將阻抗分析儀頻率設置在1kHz
- 最後將線對線電感除2得出相電感

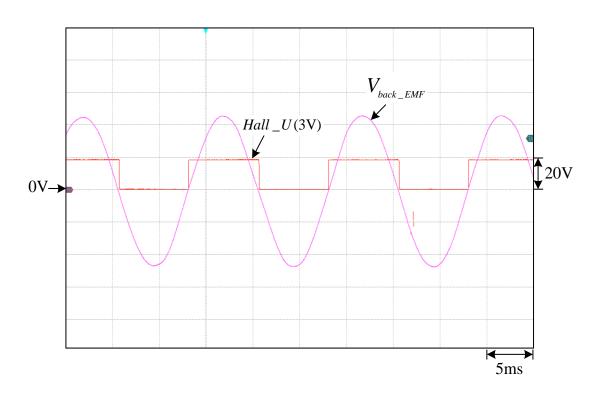

	最大值(mH)	最小值(mH)
UV相	29.44	28.44
VW相	29.66	28.54
WU相	29.74	28.55
平均值	29.61	28.51
相電感	14.80	14.26



□相反電動勢


倍率	頻率(Hz)	大小(dBV,rms)
1	67.4	29.90
2	134.8	-9.54
5	336.87	-11.17
THD _v	0.02%	





□相反電動勢對位

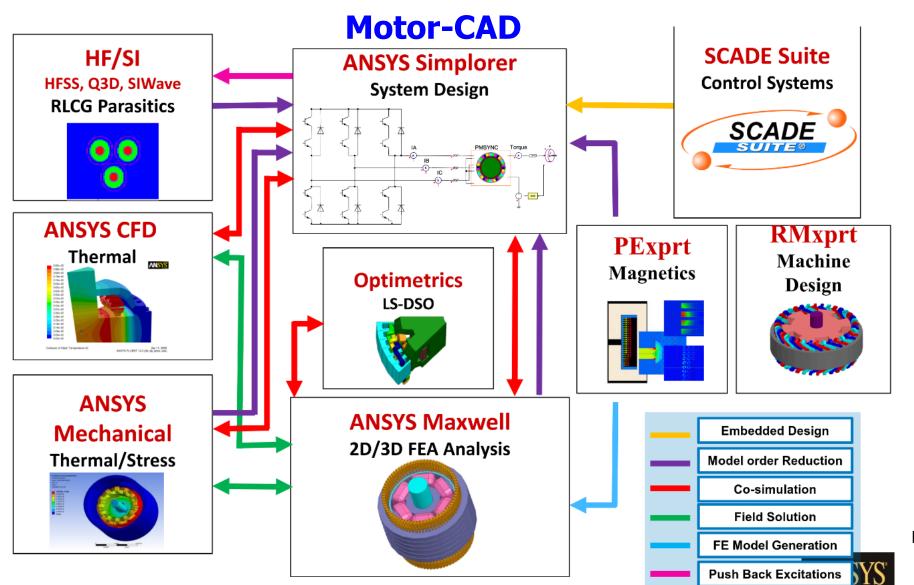
口結果

永磁同步馬達 電氣參數表					
項目	單位	數值	項目	單位	數值
額定相電壓	Vrms	?	相電阻	Ohm	1.74
額定相電流	Arms	2.6	D軸電感	mH	14.26
額定轉速/ 最高轉速	rpm	2000/?	Q軸電感	mH	14.80
額定轉矩	Nm	1.9	無載相反電動勢 @1000 rpm	Vrms	
額定功率	w	750	無載相反電動勢諧波 @1000 rpm	Vrms or % of 基頻	
額定點效率	%	?	相反電動勢常數(Ke)	量測 Vrms/1000rpm	31.5
功率因數		?	轉矩常數(Kt)	Nm/Apeak	0.9
轉子極數		8	位置感測器對位方式		
位置感測器 型式及解析度	Pulses/rev.	8192			

- 1. 交流馬達介紹
- 2. 永磁同步馬達的特性說明
- 3. 永磁同步馬達的等效電路
- 4. Y接相等效電路之參數量測方法

無載反電動勢、電阻、電感及Hall sensor對位

5. 結論



- □馬達的用途相當廣泛,針對馬達、驅動器或馬達驅動系統之設計工程師而言,如何量 測到正確的馬達電氣參數是相當重要的。
- □雖然馬達存在磁飽和、定子線圈趨膚/鄰近效應及溫度對磁石磁場強度的影響,皆會讓馬達電氣參數產生變異。但適當的電氣參數量測結果可作為標稱值(Nominal value),提供馬達設計驗證、馬達模擬環境建構及控制器設計的重要參考。
- □近代對馬達設計及驅動控制的要求已不再是馬達動與不動的議題,滿足需求規格下提高效率、降低成本及縮短開發時程已成為必要的條件。因此以模擬軟體為核心的虛擬設計(Virtual design)及虛擬製造(Virtual manufacture)已成為重要的產品研製趨勢。
- □如何確認模擬結果是否正確,對研發標的原理認知、對的設備及精準的參數量測相當 重要。

□ Multi-physics (electric, magnetic, mechanic and thermal)+ coupled field analysis

Ref. Ansys