TESTING ADAPTIVE ANTENNA ARRAYS FOR GNSS RECEIVERS

Markus Irsigler Product Manager

Sebastian Kehl-Waas Application Engineer

ROHDE&SCHWARZ

Make ideas real

CONTENTS

GNSS THREATS AND MITIGATION TECHNIQUES

ADAPTIVE ARRAY PROCESSING TECHNIQUES

the perior

TEST SOLUTIONS FOR ADAPTIVE ANTENNA ARRAYS

Rohde & Schwarz

SOURCES OF GNSS SIGNAL DEGRADATION OVERVIEW

SOURCES OF GNSS SIGNAL DEGRADATION **CLASSIFICATION OF MAN-MADE THREATS**

- Broadband noise
- Frequency sweeps
- Pulsed interference
- Example: PPD

- Radar signals
- Examples: •
- DME/TACAN 0
- o LTE

Used signals

SOURCES OF GNSS SIGNAL DEGRADATION CLASSIFICATION OF MAN-MADE THREATS

o LTE

Example: PPD

Broadcast forged Ret GNSS signal sign

Spoofing

Rebroadcast GNSS signal - Meaconing -

- GNSS signals generated by signal generator
- Rebroadcast delayed version of live GNSS signals
- Replay prerecorded GNSS signals

SOURCES OF GNSS SIGNAL DEGRADATION CLASSIFICATION OF MAN-MADE THREATS

Degraded DUT perf.

Spoofing

- Rebroadcast delayed version of live GNSS signals
- Replay prerecorded GNSS signals

Incorrect position/timing information, no reliable navigation

JAMMING AND SPOOFING A SELECTION OF HEADLINES

GPS Jamming and Spoofing On the Rise

GPS disruption is a growing problem for aviation

Russia responsible for massive satellite system spoofing, study finds

GPS spoofing threatens safety of navigation

Thousands of GNSS jamming and spoofing incidents reported in 2020

Manipulated GPS data becomes a billion-dollar risk for logistics

GPS Jamming Still Causing Problems in Finnmark GPS interference and jamming on the increase

The growing problem of jamming and spoofing of GPS satellite navigation signals just keeps getting worse

INTERFERENCE DETECTION AND MITIGATION OVERVIEW

Interference Detection

- AGC monitoring
- Spectrum monitoring
- C/N₀ monitoring
- Analysis of GNSS observables
 - Single- and double differencing
 - "Code minus carrier" (CMC) processing
- PVT monitoring, RAIM
- Multicorrelator techniques

Interference Mitigation

- Frequency domain adaptive filtering
- Pulse blanking
- Optimized antenna reception pattern,
 - e.g. choke ring antennas

INTERFERENCE DETECTION AND MITIGATION SINGLE-ANTENNA GNSS RECEIVER

CONTENTS

GNSS THREATS AND MITIGATION TECHNIQUES

ADAPTIVE ARRAY PROCESSING TECHNIQUES the states

TEST SOLUTIONS FOR ADAPTIVE ANTENNA ARRAYS

Rohde & Schwarz

ADAPTIVE ANTENNA ARRAYS IN GNSS

Electronically steered antenna reception pattern based on applying complex weights w on the receive signal on each antenna element x:

$$y = \mathbf{w}^H \mathbf{x}$$
, where $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_N \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix}$

- Weights are calculated based on optimization criteria
- Possible at pre- or post-correlation stage
- ► Typical optimization criteria:
 - Minimize output power (Null-steering)
 - Maximize signal to interference and noise ratio (SINR) (Beamforming)
- Also known as controlled reception pattern antenna (CRPA)

ADAPTIVE ARRAY SIGNAL PROCESSING PRE-CORRELATION TECHNIQUES (1)

► Typical architecture:

- GNSS signals are received well below the noise floor
- ► Interference, e.g. jammer, is well observable
 - → Can be used for pattern optimization and/or direction of arrival (DOA) estimation of jammer

ADAPTIVE ARRAY SIGNAL PROCESSING PRE-CORRELATION TECHNIQUES (2)

► Power minimization (PM) for null-steering in the direction of jammers

$$\boldsymbol{w}_{opt} = \arg\min_{\boldsymbol{w}} E\{|\boldsymbol{y}|^2\} = \arg\min_{\boldsymbol{w}} \boldsymbol{w}^H \boldsymbol{R}_{xx} \boldsymbol{w} \text{ subject to } w_1 = 1$$

The output power after weighting shall be minimized based on the constraint, that the weight for the signal of antenna element 1 w_1 is equal to 1.

- Up to *N-1* nulls can be formed in the antenna reception pattern of an *N* element antenna array (one degree of freedom is consumed in the constraint for the reference element)
- GNSS satellite signals with the same direction of arrival as the jammer may also be nulled.

ADAPTIVE ARRAY SIGNAL PROCESSING PRE-CORRELATION TECHNIQUES (3)

Linearly constrained minimum variance (LCMV) beamformer

 $|\mathbf{w}_{opt}| = \arg\min_{\mathbf{w}} E\{|y|^2\} = \arg\min_{\mathbf{w}} \mathbf{w}^H \mathbf{R}_{xx} \mathbf{w} \text{ subject to } \mathbf{w}^H \mathbf{a}(r_j) = 1, j = 1, \dots, J$

The output power after weighting shall be minimized based on the constraint, that the gain in the look directions ($a(r_i)$) of *J* GNSS satellites is equal to 1.

- Requires knowledge of GNSS satellite positions (ephemeris) and receiver attitude (e.g. IMU data)
- Up to *N-J* nulls can be formed in the antenna reception pattern of an *N* element antenna array
- Reception of GNSS satellite signals may be improved compaired to plain power minimization

ADAPTIVE ARRAY SIGNAL PROCESSING POST-CORRELATION TECHNIQUES (1)

► Typical architecture:

- ► After correlation, GNSS signals are well above noise floor
- Weight computation is performed on data after dispreading
- Individual set of weights for each receive channel

ADAPTIVE ARRAY SIGNAL PROCESSING POST-CORRELATION TECHNIQUES (2)

Minimum Mean Squared Error (MMSE) beamforming

$$w_{opt} = \arg\min_{w} E\{|r - y|^2\} = \arg\min_{w} E\{|r - w^H x|^2\}$$

The mean squared error of the receive signal with regards to the reference signal r, e.g. the local code replica, shall be minimized.

- A separate beam can be formed for each SV in view
- Susceptible to multipath induced errors

ADAPTIVE ANTENNA ARRAYS BENEFITS

CONTENTS

GNSS THREATS AND MITIGATION TECHNIQUES

ADAPTIVE ARRAY PROCESSING TECHNIQUES

the states

TEST SOLUTIONS FOR ADAPTIVE ANTENNA ARRAYS

Rohde & Schwarz

TEST REQUIREMENTS FOR ADAPTIVE ANTENNA ARRAYS

TEST SYSTEM FOR MULTI-ANTENNA GNSS RECEIVERS

Number of GNSS constellation simulators is scalable according to number of antenna array elements (here up to 8 antennas)

Automated alignment in terms of amplitude, phase and time between individual RF outputs at a user-defined reference plane with R&S®RFPAL software

Modular concept: subsets of simulators can be independently used

Straight-forward configuration of complex jamming scenarios with the R&S®Pulse Sequencer software

 \checkmark

For interferer simulation with highest J/S ratio a separate RF output per antenna element is recommended

Rohde & Schwarz

TEST CASE 1 – GNSS ONLY SIMULATION (LOS)

Applications:

- Evaluation of beamforming algorithms
- Attitude determination
- Reference measurements

TEST CASE 2 – GNSS MULTIPATH SIMULATION

TEST CASE 3 – SPOOFING SCENARIO

umber of Vehicles	Simulation Monitor	
Position	Position Configuration	V 1
lumber of Antennas 4	Antenna Configuration	V2
invironment Model	environment Configuration	

Second Vehicle

Display				Top View X (Heading) /m				Side View				
3D	View	0.1			- Cog		Y/m	-1 -0.5 0 0.5		Q	A 3 DG	<u>X /m</u>
	Body Mask		-1	-0.5	0	0.5	1 ΔX	۱ ۵۷	-1 ΔZ	-0.5 0 ΔHeading	0.5 ΔElevation	1 ΔBank
Δ1		OpenS	cy	/var/use	r/gnss/pa	atch_ante	/m nna 0.00	/m 0 0.00	/m 0 0.000	/deg 0.000	/deg 0.000	/deg 0.000
		OpenSk		y /var/user/gnss/patch_antenna			nna 0.00	0 0.00	0.000	0.000	0.000	0.000
12		OpenS										

All antennas at same location

EXAMPLE TEST RESULTS – JAMMING SCENARIO

SUMMARY

Your task Simulation of unintentional interference Simulation of multipath propagation Simulation of jamming attacks

Simulation of spoofing attacks

Our solution

Your benefit

Scalable and modular concept

Automated amplitude, time and phase alignment

Integrated simulation of multipath and spoofing scenarios

Straight-forward configuration of complex jamming scenarios

Find out more www.rohde-schwarz.com/gnss

ROHDE&SCHWARZ

Make ideas real

EXAMPLE TEST RESULTS – JAMMING SCENARIO

Rohde & Schwarz