5G FR1 SIGNALING TESTING SOLUTION ACCORDING TO REL.15 AND REL. 16

ROHDE&SCHWARZ

Make ideas real

5G NR TOWARDS 6G – A CONTINUOUS JOURNEY

3GPP FR1 frequency bands

NR operating band	Uplink	Downlink	Duplex mode	NR operating band	Uplink	Downlink	Duplex mode
n1	1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD	n67	N/A	738 MHz – 758 MHz	SDL
n2	1850 MHz – 1910 MHz	1930 MHz – 1990 MHz	FDD	n70	1695 MHz – 1710 MHz	1995 MHz – 2020 MHz	FDD
n3	1710 MHz – 1785 MHz	1805 MHz – 1880 MHz	FDD	n71	663 MHz – 698 MHz	617 MHz – 652 MHz	FDD
n5	824 MHz – 849 MHz	869 MHz – 894 MHz	FDD	n74	1427 MHz – 1470 MHz	1475 MHz – 1518 MHz	FDD
n7	2500 MHz – 2570 MHz	2620 MHz – 2690 MHz	FDD	n75	N/A	1432 MHz – 1517 MHz	SDL
n8	880 MHz – 915 MHz	925 MHz – 960 MHz	FDD	n76	N/A	1427 MHz – 1432 MHz	SDL 🚿
n12	699 MHz – 716 MHz	729 MHz – 746 MHz	FDD	n77 ¹²	3300 MHz – 4200 MHz	3300 MHz – 4200 MHz	TDD
n13	777 MHz – 787 MHz	746 MHz – 756 MHz	FDD	n78	3300 MHz – 3800 MHz	3300 MHz – 3800 MHz	TDD 🔰
n14	788 MHz – 798 MHz	758 MHz – 768 MHz	FDD	n79 ¹⁷	4400 MHz – 5000 MHz	4400 MHz – 5000 MHz	TDD
n18	815 MHz – 830 MHz	860 MHz – 875 MHz	FDD	n80	1710 MHz – 1785 MHz	N/A	SUL
n20	832 MHz – 862 MHz	791 MHz – 821 MHz	FDD	n81	880 MHz – 915 MHz	N/A	SUL 🥑
n24 ¹⁶	1626.5 MHz – 1660.5 MHz	1525 MHz – 1559 MHz	FDD	n82	832 MHz – 862 MHz	N/A	SUL
n25	1850 MHz – 1915 MHz	1930 MHz – 1995 MHz	FDD	n83	703 MHz – 748 MHz	N/A	SUL
n26	814 MHz – 849 MHz	859 MHz – 894 MHz	FDD	n84	1920 MHz – 1980 MHz	N/A	SUL
n28	703 MHz – 748 MHz	758 MHz – 803 MHz	FDD	n85	698 MHz – 716 MHz	728 MHz – 746 MHz	FDI
n29	N/A	717 MHz – 728 MHz	SDL	n86	1710 MHz – 1780 MHz	N/A	EUL I
n30 ³	2305 MHz – 2315 MHz	2350 MHz – 2360 MHz	FDD	n89	824 MHz – 849 MHz	N/A	SUL
n34	2010 MHz – 2025 MHz	2010 MHz – 2025 MHz	TDD	n90	2496 MHz – 2690 MHz	2496 MHz - 2350 Mill	TDD ⁵
n38 ¹⁰	2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD	n91	832 MHz – 862 MHz	1427 MHz - 14.'2 MHz	FDD ⁹
n39	1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD	n92	832 MHz – 862 MHz	143 (MHz 11/17 MHz	FDD ⁹
n40	2300 MHz – 2400 MHz	2300 MHz – 2400 MHz	TDD	n93	880 MHz – 915 MHz	1427 MH 1432 MHz	FDD ⁹
n41	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD	n94	880 MHz – 915 MHz	1 132 MHz – 1517 MHz	FDD ⁹
n46	5150 MHz – 5925 MHz	5150 MHz – 5925 MHz	TDD ¹³	n95 ⁸	2010 MHz – 2025 MHz	N/A	SUL
n47 ¹¹	5855 MHz – 5925 MHz	5855 MHz – 5925 MHz	TDD	n96 ¹⁴	5925 MHz – 7125 N'H.	5925 MHz – 7125 MHz	TDD ¹³
n48	3550 MHz – 3700 MHz	3550 MHz – 3700 MHz	TDD	n97 ¹⁵	2300 MHz - 2400 Mł 'z	N/A	SUL
n50	1432 MHz – 1517 MHz	1432 MHz – 1517 MHz	TDD ¹	n98 ¹⁵	1880 MHz - 9とつい::1z	N/A	SUL
n51	1427 MHz – 1432 MHz	1427 MHz – 1432 MHz	TDD	n99 ¹⁶	1626 5 MI (z - 1. 60.5 MHz	N/A	SUL
n53	2483.5 MHz – 2495 MHz	2483.5 MHz – 2495 MHz	TDD	n101	1300 MH2 1910 MHz	1900 MHz – 1910 MHz	TDD
n65	1920 MHz – 2010 MHz	2110 MHz – 2200 MHz	FDD ⁴	n102 ¹⁴	59.`5 MHz – 6425 MHz	5925 COMPANY RE	STRICTE
n66	1/10 MHz – 1780 MHz	2110 MHz – 2200 MHz	FDD			• • • • • • • •	•••••

3GPP FR2 frequency bands

NR operating band	Uplink	Downlink	Duplex mode
n257	26500 MHz – 29500 MHz	26500 MHz – 29500 MHz	TDD
n258	24250 MHz – 27500 MHz	24250 MHz – 27500 MHz	TDD
n259	39500 MHz – 43500 MHz	39500 MHz – 43500 MHz	TDD
n260	37000 MHz – 40000 MHz	37000 MHz – 40000 MHz	TDD
n261	27500 MHz – 28350 MHz	27500 MHz – 28350 MHz	TDD
n262	47200 MHz – 48200 MHz	47200 MHz – 48200 MHz	TDD
Rohde & Schv	varz	RÓ	nde

3GPP RELEASE 16

- ► Enhancement of Ultra-Reliable and Low Latency Communications (URLLC)
- Support of LAN-type services
- Cellular Internet of Things (IoT)
- Advanced V2X support
- Northbound APIs related items
- Coexistence with Non-3GPP systems
- ► Railways and Maritime
- Mission Critical, Public Warning
- Conversational services, Streaming and TV
- 5G Location and Positioning Services
- Slicing
- Other system-wide Features
- Radio Features

Rohde & Schwarz

Ronde & Schwarz Ronde & COMPANY RESTRICTED

5GACIA

INDUSTRY 4.0 SPECIFIC DEPLOYMENT SCENARIOS <u>5G-ACIA WP</u>: 5G NON-PUBLIC NETWORKS (NPN) FOR INDUSTRIAL SCENARIOS

as a campus or a factory, offer high reliability and operation flexibility

Rohde & Schwarz

ENHANCEMENT OF URLLC SUPPORT IN THE 5G CORE NETWORK

- QoS Monitoring: defined in R16 for the measurement of packet delay between UE and PSA UPF.
- Dynamic division of Packet Delay Budget: To obtain a more accurate delay budget for NG-RAN, SA WG2 decided to allow a dynamic value for the core network PDB (CN PVR, so that the SMF or NG-RAN can dynamically calculate delay budget of NG-RAN based on the CN PDB.

Rohde & Schwarz

Physical Layer Enhancements for NR URLLC

- ► High reliability
 - DCI format 0_2 and DCI format 1_2 (Compact DCI using smaller payload and reducing code rate)
 - Multiple active configured grant configurations for a BWP (RRC)
 - Two HARQ-ACK codebooks constructed simultaneously
- ► Low latency
 - Enhanced PDCCH monitoring capability
 - Sub-slot based HARQ-ACK feedback
 - PUSCH enhancements repetition type A and B
 - Enhanced inter UE Tx prioritization/multiplexi

Ronde & Schwarz Ronde & LONDARY RESTRICTED

5G evolution, Releases 16 5G EVOLUTION – POSITIONING, NR-U, 2-STEP RACH, MOBILITY, POWER SAVING etc.

Rohde & Schwarz

REL. 16: NR POSITIONING

ANGLE-BASED TECHNOLOGIES

 Angle-based technologies measure the AoA or AoD of the signal

- The accuracy of the positioning is determined primarily by the Half Power Beam Width (HPBW)
- In the example, the UE can be located anywhere in the red square
- For FR2, angle-based technologies can be interesting
- They can be combined with other measurements such as RTT or OTDOA

Rohde & Schwarz

REL. 16: NR ACCESS TO UNLICENSED SPECTRUM (NR-U)

REL. 16: NR ACCESS TO UNLICENSED SPECTRUM (NR-U)

5G NR INTEGRATED ACCESS BACKHAUL (IAB)

REL. 16: NR INTEGRATED ACCESS AND BACKHAUL (IAB)

- Wireless backhaul links to relay the access traffic
- Enabling flexible and ultra-dense cell deployments at lower cost, leverages coverage (not capacity)
- Multi-hops for the short range in mmWave
- ▶ Replaces the proprietary solutions in current (extensively used) wireless backhaul links (P2P, LOS)
- ► Motivated by larger bandwidths and native beamforming in NR (as opposed to LFE Rel-10 relays)
- Very beneficial for NR rollout and during the early phases of the initial growth

Rohde & Schwarz

Core Network Internet Backhaul link Access link **IAB-donor** UE IAB-node IAB-node SDAP SDAP PDCP PDCP Adaptation Adaptation Adaptation Adaptation GTP-U GTP-U BLC RLC RLC RLC RLC RLC UDP UDP Uu F1* F1* MAC MAC MAC MAC P MAC MAC IP PHY PHY PHY PHY DU MT CU-UP

REL. 16: NR 2-STEP RACH

Idea: change legacy 4-step RACH into 2-step RACH Motivation: reduce latency and control signaling overhead

5G NR MOBILITY ENHANCEMENTS

UE Power Saving in NR

- Power Saving Techniques in CONNECTED state
 - WUS(DRX adaptation)
 - Cross slot scheduling (PDCCH \rightarrow DCI \rightarrow PDSCH)
 - Maximum MIMO Layer Adaptation
 - Fast transition out of CONNECTED state
- ► Power Saving Techniques in idle/inactive state
 - Reduced RRM measurements in idle/inactive state
- ► UE assistance information

About 5GAA Membership 5GAA in Motion

The Technology Calendar

The 5G Automotive Assoc from the automotive, techn develop end-to-end solution

- Making vehicles sn Communication and cor technologies will be ess everything communicati pedestrians (V2P), netw
- Making vehicles sa C-V2X will improve safe pedestrians and road in situations, reducing coll
- Improving driving

0	V2X

Exploring the technology: C-V2X

Cellular-V2X (C-V2X) as initially defined as LTE V2X in 3GPP Release 14 is designed to operate in several modes.

It provides one solution for integrated V2V, V2I and V2P operation with V2N by leveraging existing cellular network infrastructure:

- Device-to-device [1] is Vehicle-to-Vehicle (V2V), Vehicle-to-(Roadway) Infrastructure (V2I) and Vehicle-to-Pedestrian (V2P) direct communication without necessarily relying on network involvement for scheduling
- Device-to-cell tower is another communications link which enables network resources and scheduling and utilizes existing operator infrastructure. Device-to-cell tower communications constitute at least part of the V2I proposition and are important to end-to-end

C-V2X will enlighten any journey by powering real-time traffic information to optimise your mp finding the closest free parking space or enabling predictive maintenance to save drivers both time and money. And it's not just drivers who will benefit from it, passengers will too with the next-generation of infotainment services. Whether you want to watch a movie during the ride or participate in an important conference call, all of this and more is possible.

Surce:5GAA, https://5gaa.org/

5G NR SIDELINK – CHANNEL STRUCTURE

Rohde & Schwarz

Technology of PC5 direct communications (5G) **NR V2X SIDELINK SUPPORTING QoS**

ΙΙΕΔ				Туре	Priority Level	Delay Budget	Error Rate	Maximum Data Burst Volume	Averaging Window	Example Service
		UEB	21	GBR	3	20 ms	10 ⁻⁴	1. N/A	2. 2000 ms	3. Platooning between UEs – Higher degree of automation:
Application Layer ID 1	PC5 Unicast link 1	Application Layer ID 2								 Platooning between UE and R – Higher degree of automation
	PC5 QoS Flow #1		22	(NOTE 1)	4	50 ms	10 ⁻²	5. N/A	6. 2000 ms	 Sensor sharin higher degree of automation
V2X Service A	PC5 QoS Flow #2	V2X Service A	23		3	100 ms	10 ⁻⁴	8. N/A	9. 2000 ms	 Information sharing for automat driving – between UEs or UE and RSI higher degree of automation
V2X Service B	PC5 QoS Flow #3	V2X Service B	55	Non-GBR	3	10 ms	10 ⁻⁴	11. N/A	12. N/A	 Cooperative la change – higher degree of automation
			56		6	20 ms	10 ⁻¹	14. N/A	15. N/A	 Platooning informative exchang – low degree of automation; Platooning – information sharing with RSU
Application Layer ID 3	PC5 Unicast link 2	Application Layer ID 4	57		5	25 ms	10 ⁻¹	18. N/A	19. N/A	20. Cooperative la change – lower dugr e of automation
V2X Service C	PC5 QoS Flow #4	V2X Service C	58		4	100 ms	10-2	21. N/A	22. N/A	23. Sensor info netion sharing low degree of automation
V2X Service D	PC5 QoS Flow #5	V2X Service D	59 90	Delay Critical GBR	6	500 ms	10 ⁻¹	24. N'A 27. 2010 Lites	25 N//. 18. 2000 ms	 Platooning – reporting to an RSL Cooperative collision avoidance; Sensor sharin Higher degree of automation; Mideo checking
			91	(NOT 1)	2	3 ms	10-5	32. 2000 bytes	33. 2000 ms	 31. Video sharing higher degree of automation 34. Emergency trajectory alignment 35. Sensor sharin Higher degree of automation
Not an eye test 🙂 but	an example of the flex	kibility:		0						

3GPP defines ~10 different QoS flow profiles for the NR V2X sidelink

Rohde & Schwarz

Technology of PC5 direct communications (5G) THE 7 PILLARS OF 5G NR-C-V2X

5G SIGNALING SOLUTION CMX500

- ► Up to 32 NR Layers
- ► Up to 32 LTE Layers
- 48 layers on air simultaneously
- ► Sub8: 400 MHz 8 GHz
- ▶ mmW: 24 ... 50 GHz

OLD WORLD V.S. NEW WORLD

CMX500 OBT One Box Tester OBT Setup

Sube THX

Rohde & Schwarz

OLD WORLD V.S. NEW WORLD

FR1 & FR2 & OFE in a single Box

Rohde & Schwarz

CMX500 UPDATE

Rohde & Schwarz validates 10 Gbps end-to-end (E2E) peak downlink IP data throughput

Rohde & Schwarz announced today the next breakthrough in 5G data performance: With support of Qualcomm Technologies, Inc., Rohde & Schwarz has validated 10 Gbps end-to-end (E2E) IP data performance using its R&S CMX500 5G radio communication tester platform. The setup was powered by Snapdragon® X65 5G Modem-RF System, the world's first 3GPP Release 16 modem-RF system with Qualcomm® QTM545 mmWave Antenna Module.

Rohde & Schwarz

Rohde & Schwarz achieved the milestone results based on a 3GPP Release 16 5G New Radio Dual Connectivity (NR-DC) network simulation, provided by its <u>R&S CMX500</u> 5G radio communication tester. In the simulation, two cell groups were simultaneously connected, one using spectrum in frequency range 1 (FR1) and the other in frequency range 2 (FR2; mmWave). The FR1 carner spans

4x4 and 256QAM modulation. Eight additional component carriers are combined in FR2, using MIMO 2x2 and 256QAM modulation.

The demonstration covered several test cases that verified high data throughput in downlink over IP layer, using different configuration modes of the 5G protocol stack's lower layers such as Radio Link Control (RLC) in Unacknowledged Mode (UM) and Acknowledged Mode (AM). These configuration modes made it possible to pusit the line over the wireless communication link, making this the first time ever that real IP end-2-end data was used in a perform ance of this kind. Previously, throughput had simply been verified on the modem's lower layer 5G protocol stack. This opens up a new era of 5G data performance, which eventually will an uple eMBB use cases like 4K and 8K video streaming or Eugracented reality applications.

MMW RF INTERFACE: V- AND H- LAYERS USING ONE DUAL-POL ANTENNA

PRIORITIES 3GPP RELEASE 16 FEATURE

NR-DC FR1+FR2 End-to-End (E2E) data link > 10Gbps

UE power saving

NR in Unlicensed spectrum

NR Positioning

Rohde & Schwarz

Prepared for Rel-16

CMX500 5G APPLICATION TEST

- Application Test Introduction
- ► Feature highlights
 - Throughput testing
 - VoLTE/VoNR audio test

R&S CMX500 ONE-BOX TEST SETUP FOR APPLICATION TESTING

Unique integrated solution – Simplify your test setup!

Rohde & Schwarz

IMS SERVER – VOLTE/VONR CALLS -LOOPBACK

Use Case: Loopback Mode

Procedure:

- ▶ UE registers to the internal CMX500 IMS Server
- ► Establishes a VoLTE/VoNR call with the virtual CMX500 phone to an arbitrar
- ▶ The user can speak into the microphone of the DUT and listen to the echo at the loudspeaker of the DUT

Test Focus:

- ► Functional test of the microphone and speaker
- Verification of IMS SIP registration and call setup procedure
 - Functional test of IMS client implementation
- ► Functional verification of uplink and downlink communication

Rohde & Schwarz

► IMS Media Endpoint Configuration

Media Endpoint	Internal Loopback	2
	External DAU USB sound card	
	Internal Loopback	
	IP Forward	

ACOUSTIC VS. CONDUCTED TEST

Acoustics tests based on 3GPP TS 26.132

► Audio acoustic tests in a chamber

Use Case:

- ► High end audio quality test
- ► New hardware or mobile device introduction

Rohde & Schwarz

Conducted tests 3GPP TR 26.954 Tests

 Performance and robustness test for VoNR using (Impairments / Fading)

Use Case:

- Operator performance test
- ► Test of software changes on mobile devices
- ► Test of new codec versions e.g EVS codec updates

CMsequencer

STATE OF THE ART, FUTURE PROOF SOFTWARE

COMPLETE COVERAGE OF TESTS IN ONE GRAPHICAL APPLICATION

ALL TYPES OF R&D TESTS IN ONE GRAPHICAL TOOL

BRDIGE WEBGUI & SEQUENCER WITH SNIPPETS

BATTERY DRAIN - TESTING WITH CMX500

5G NR Network simulator

NGM200 Power Supply

Rohde & Schwarz

CMX500

Rethink 5G testing The synergy of best performance and ease of use in one box.

All-in-one high performance 5G testing solution packed in a single box

100	000	000	00	0.01	Canada Ca	
1 0	000	000	00	.0.		
	<u><u></u>. <u></u>.</u>	•••••	0· 0· 0	.@:		
·	. O:		• <u>.</u>	@: _ ·		
·	· ·	°	°.		🔷 =	
• *	10, 100 I	1		' 0	111 m	

Gbps		8 Gbps							
4x4	2x2	2x2	2x2	2x2	2x2	2x2	2x2	2x2	
	110/202	100 100 100	Ш.	W/85	110 110 110	W.S.	W/25	110/ES	

- 10 Gbps and more end-to-end IP throughput
- All possible 5G NR (SA/NSA) FR1/FR2 deployments
- All frequency ranges and technologies (4G, 3G, 2G)
- 48 layers
- Future proof by design

Leading-edge RF performance and ease of use for all 5G NR use cases are

- CMsquares our novel, cross platform, and highly intuitive Web UI ٠
- Designed to cover all 5G NR use cases: VoNR, IP, messaging, Video, LBS, and more ٠
- One box solution allows simplified test set-up and reduces re-cabling and footprint ٠
- Offering a whole portfolio of 5G NR test equipment based on one platform •

THANK YOU

ROHDE&SCHWARZ

Make ideas real

