5G TODAY AND INTO THE FUTURE

A TECHNICAL OVERVIEW OF R16, 17, 18 AND BEYOND

Reiner Stuhlfauth Technology Manager Wireless

ROHDE&SCHWARZ

Make ideas real

5G NR TECHNOLOGY EVOLUTION

3GPP Release 17 (5G Phase 2+); focus: NTN, NR RedCap, FR2-2

2022

2020

| March 2024

3GPP Release 18 5G Advanced; focus: XR, AI, Energy Saving

2024

2026

eMBB: enhanced Mobile Broadband URLLC: Ultra-Reliable Low Latency Communicatior mMTC: massive Machine Type Communication

2018

LET'S GET MORE TECHNICAL: 3GPP REL. 16 TOPIC SUMMARY

Highlighted work items = major new aspects

5G evolution, Releases 16 INDUSTRIAL IOT

INDUSTRY 4.0 SPECIFIC DEPLOYMENT SCENARIOS <u>5G-ACIA WP</u>: 5G NON-PUBLIC NETWORKS (NPN) FOR INDUSTRIAL SCENARIOS

• Isolated NPN deployed on the organization's defined premises, such as a campus or a factory, offer high reliability and operation flexibility

5G INTEGRATION INTO AN ETHERNET TSN ARCHITECTURE

The 5G system appears as a set of transparent TSN Ethernet bridges. Bridge supports time sync, store & forward scheduling, jitter management & reporting

5G evolution, Releases 17 STRENGTHEN THE FOUNDATION AND IMPROVING VERTICALS

The ongoing evolution of 5G NR-V2X: SIDELINK ENHANCEMENTS + RELAY

EVOLUTION OF 3GPP MOBILE COMMUNICATIONS STANDARD RELEASES 12 TO 16 FF RELEVANT FOR AUTOMOTIVE

5G NR C-V2X COMMUNICATION MODES AT PHY LAYER

Physical sidelink feedback channel

PSFCH [sidelink feedback control info (SFCI)]

Rohde & Schwarz

Technology of PC5 direct communications (5G) NR V2X SIDELINK SUPPORTING QoS

Default

Resource

Default

Packet Packet

Default

Example Servic

3GPP defines ~10 different QoS flow profiles for the NR V2X sidelink

Rohde & Schwarz 5G Today and Into the Future

V2X PC5 INTERFACE PROCEDURE BROADCAST

V2X PC5 INTERFACE PROCEDURE GROUPCAST

1. V2X application layer carries out group management

and RX UEs determine destination layer 2-ID

Time

4. V2X service groupcast

HARQ feedback; only NACK are sent

5G NR ZONE CONCEPT

V2X PC5 INTERFACE PROCEDURE UNICAST

REL.17 NR SIDELINK ENHANCEMENTS

Release 17 sidelink with focus on battery consumption! (default resource pool allocation. TX

side DTX & RX side DRX alignment, SL sensing)

Release 17 sidelink with focus on uRLLC! (reliability & reduced latency, Inter-Ue coordination, new frequency bands: Uu and SL interface in licensed spectrum, SL operation geofencing)

> Release 17 sidelink with focus on ProSe! (network controlled interactive services, enhanced relay & coverage)

The ongoing evolution of 5G NON-TERRESTRIAL NETWORKS

5G NTN constellations **NTN: CONSTELLATION**

LEO

5G NTN architecture **NTN: TRANSPARENT PAYLOAD ARCHITECTURE**

5G NTN RF challenges **NTN: DOPPLER RATE**

5G NTN procedures 5G NTN MOBILITY SCENARIOS

NTN: PROTOCOL STACK

The ongoing evolution of 5G REDUCED CAPABILITY (RedCap) + POWER SAVING

UE POWER SAVING OVERVIEW AS TRIANGLE

Hardware restrictions and reduced capabilities:

- Lower power class
- Single antenna
- Half-duplex operation
- Bandwidth restrictions
- Etc.

Enhanced mechanisms & innovations;

- Wake-up signals
- Relaxed measurements
- Adaptive bandwidth
- Etc.

Operational enhancements:

- Discontinuous reception (DRX)
- Sleep mode
- Power save mode (PSM)
- Signaling reduction, i.e. TAU
- Cross-slot schedulingEtc.

5G NR POWER SAVING ASPECTS – OVERVIEW

Bandwidth part (BWP= switching

Max of DL MIMO layers configurable per active BWP

Wake up signal introduction, scheduled by PDCCH

Cross-slot scheduling

UE assisted power saving methods

RRM measurement relaxation

Rel. 16 ++ features: Several methodologies with respect to power saving are introduced

5G NR POWER SAVING ASPECTS – BWP SWITCHING

Rel. 15 feature: switching between different BWPs => goal to reduce energy

5G NR POWER SAVING ASPECTS – WAKE UP SIGNAL (WUS)

5G NR POWER SAVING – CROSS-SLOT SCHEDULING

Rel. 16++ feature: Introduction of cross-slot scheduling functionality. Idea: UE assumes 0ms scheduling transition: Via DCI and cross-slot scheduling a microsleep period can be introduced

5G NR POWER SAVING – UE ASSISTED POWER SAVING

- drx-Preference: UE preference for C-DRX which includes: long/short DRX cycle, DRX inactivity timer, short DRX cycle timer
- **maxBW-Preference**: UE preference for maximum aggregated bandwidth of the cell group (CG)
- ► maxCC-Preference: UE preference for max number of SCellsof the CG
- ► maxMIMO-LayerPreference: UE preference for max number of MIMO layers of the CG
- minSchedulingOffsetPreference: UE preference for min offset for cross-slot scheduling of the CG
- releasePreference
 This indicates whether the UE prefers to transition out of RRC_CONNECTED

Rel. 16++ feature: Introduction of UE assisted power saving methodologies

DEVICE OPTIMIZATION

- Reduced capability (RedCap)
 - 20 MHz (FR1), 100MHz (FR2)
 - -1 or 2 Rx
 - 256QAM optional
 - Half duplex FDD
 - Lower transmit power

URLLC

NR-Light

- Limited mobility/handovers

eMTC.

Battery Life

Cost

NETWORK ENERGY EFFICIENCY

Holistic approach: From cloud to component, energy saving methods in the entire 5G system

DV_{MN} $EE_{MN,DV} =$ ECMA

ETSI & 3GPP definition: Energy efficiency

Data volume / energy consumption

Designated coverage area / energy consumption

The ongoing evolution of 5G POSITIONING ENHANCEMENTS

LOCATION-BASED SERVICES IN REL. 17 - REQUIREMENTS

Ambitious objectives for Rel-17 target positioning requirements

Commercial use cases:

- Horizontal position accuracy (< 1 m) for 90% of UEs
- Vertical position accuracy (< 3 m) for 90% of UEs
- End-to-end latency for position estimation of UE (< 100 ms)
- Physical layer latency for position estimation of UE (< 10 ms)

lloT use cases:

- Horizontal position accuracy (< 0.2 m) for 90% of UEs
- Vertical position accuracy (< 1 m) for 90% of UEs
- End-to-end latency for position estimation of UE (< 100ms, in the order of 10 ms is desired)
 - Physical layer latency for position estimation of UE (<10ms)

RELEASE 17 – POSITIONING ENHANCEMENTS

436

LBS IN RELEASE 18 – DIFFERENTIAL POSITIONING

LOCATION-BASED SERVICES IN RELEASE 17 - OUTLOOK

SPECTRUM FOR 5G NR AND 5G EVOLUTION

BS

Rohde & Schwarz

EXTENDING CURRENT NR OPERATION TO 71GHz - challenges

Higher phase noise

Definition of phase noise:

PA efficiency

Spectral efficiency

Friis equation => path attenuation

$$\frac{P_{Rx}}{P_{Tx}} = G_{antenna} \left(\frac{c}{4\pi f d}\right)^{\gamma}$$

At higher frequencies: Free space path loss is high -> beamforming with high gain

Larger band size & bandwidth => Licensed & unlicensed bands

EXTENDING CURRENT NR OPERATION TO 71GHz

- In addition to 120kHz SCS, new SCS (480kHz and 960kHz) and wider bandwidth(s) are specified for operation in the extended frequency range.
- After some discussion the maximum bandwidth support is now 2GHz (in addition to 100/400/1600 MHz).

Operating Band	Uplink (UL) operating band BS receive UE transmit		Downlink (DL) operating band BS transmit UE receive			Duplex Mode	
	F _{UL low}	-	F _{UL high}	F _{DL low}	, —	F _{DL high}	
n263	57000 MHz	-	71000 MHz	57000 MHz	-	71000 MHz	TDD (Note)
[n264]	66000 MHz	-	71000 MHz	66000 MHz		71000 MHz	TDD (Note)
NOTE:	n263 unlicensed, n264 licensed						

EXTENDING NR OPERATION TO 71GHz – some details

Rohde & Schwarz

FR2-2 unlicensed: only dynamic shared mode + LBT

FR2-2 PRACH: longer sequences for better efficiency

EXTENDING NR OPERATION TO 71GHz – some details

FR2-2 study phase: discussions

Subcarrier	Minimum bandwidths [MHz]	Maximum		
Spacing [kinz]				
120	50, 400 (Note)	400		
480	200	1600		
960	400, 2160 (Note)	1600, 2000, 2160,		
		3200 (Note)		

FR2-2: SSB with wider subcarrier spacing

Rohde & Schwarz

- Wider SCS with SSB => reception performance is weaker
- Mixed numerology allowed
- Potential SSB and COREST0 offset

Signaling via k_{SSB}

SSB mixed numerology possible and offset

Point A CRB corresponding to the position of SSB, k_{sse} indicates possible frequency offset due to different subcarrier spacing

RAN#95 : 3GPP RELEASE SCHEDULE MARCH 2022

BÈ

ADDITIONAL RESOURCES AND WHITEPAPER RELATED TO THE **CONTENT OF TODAY'S PRESENTATIONS: 5G VOICE OVER NEW RADIO** (VoNR)

5G technology book oline version (>1000 pages on 5G technology): www.rohde-schwarz.com/5G

5G NR-V2X FOR ENHANCED AUTOMOTIVE COMMUNICATIONS

Technology deep dive into architecture, protocols and physical layer aspects

5G Voice over New Radio (VoNR) | Rohde & Schwarz (rohdeschwarz.com)

5G Non-terrestrial Networks Technology Update | Rohde & Schwarz (rohdeschwarz.com)

TAKING NEXT STEPS ON NON-TERRESTRIAL NETWORKS

AND SATELLITE 5G/IoT

Non-terrestrial networks technology

from a 3GPP perspective

Automotive | (rohdeschwarz.com)

WORLDWIDE SPECTRUM ALLOCATIONS Courtesy of Bobde & Schwar

White paper: Positioning in 5G NR **Rohde & Schwarz** (rohde-schwarz.com)

POSITIONING IN 5G NR: A LOOK AT THE TECHNOLOGY AND RELATED TEST ASPECTS

Additional Resources

- Worldwide Spectrum Allocation Poster (2020)
- Free "Demystifying 5G NR" poster | Rohde & Schwarz (rohdeschwarz.com)

Rohde & Schwarz

5G Today and Into the Future

5G in Rohde & Schwarz