HOW HIGH PRECISION GNSS ENABLES NEW AUTOMOTIVE APPLICATIONS

Colm Mulligan Market Segment Manager Automotive Connectivity

Rohde & Schwarz

ROHDE&SCHWARZ

Make ideas real

Markus Irsigler Product Manager Signal Generators

Rohde & Schwarz

Jose Luis Carretero Validation & Integration Manager

AGENDA

- High precision enables emerging applications
- Basic principles of high precision GNSS
- ► How a high precision GNSS network works
- ► Testing high precision GNSS
- Summary and Conclusions

GNSS TECHNOLOGY INTRODUCTION

GNSS = Global Navigation Satellite System

GNSS comprises of 6 major constellations, 4 with global coverage.

GNSS User Technology Report | Issue 3, 2020

Positional accuracy from Standalone GNSS varies greatly on conditions. High Precision GNSS helps to improve this.

A VEHICLE HAS MANY SENSORS...

However only GNSS provides an absolute position today!

HIGH PRECISION GNSS CHARACTERISTICS

Global footprint. Automotive industry does not want country specific solutions.

Integrity. High degree of confidence in the positional accuracy.

Continuity of Service. 24 hours per day, 7 days a week.

KEY GNSS AUTOMOTIVE APPLICATIONS

Emerging Applications require **High Precision GNSS**

AGENDA

- ► High precision enables emerging applications
- Basic principles of high precision GNSS
- ► How a high precision GNSS network works
- ► Testing high precision GNSS
- Summary and Conclusions

GNSS-BASED POSITIONING METHODS FROM STANDALONE TO HIGH PRECISION GNSS

Standalone GNSS

Single-frequency code observations

Standalone GNSS Multi-frequency code observations

Augmented GNSS Code corrections / error modelling

High-Precision GNSS Carrier processing / error modelling

GNSS-BASED POSITIONING METHODS FROM STANDALONE TO HIGH PRECISION GNSS

Standalone GNSS

Single-frequency code observations

Standalone GNSS Multi-frequency code observations

Augmented GNSS Code corrections / error modelling

High Precision GNSS Carrier processing / error modelling

GNSS-BASED POSITIONING METHODS FROM STANDALONE TO HIGH PRECISION GNSS

1. STANDALONE GNSS POSITIONING GNSS ERRORS

Measured distance PR between satellite and receiver contains errors

1. STANDALONE GNSS POSITIONING GNSS ERRORS

UERE...user equivalent ranging error HDOP...horizontal dilution of precision

GNSS Error budget (1σ)													
	Ionospheric errors Tropospheric errors Satellite orbit errors Satellite clock errors RX noise and multipath	5.0 m 4.0 m 1.0 m 1.0 m 1.5 m	2.5 m 0.5 m 1.0 m 1.0 m 1.5 m	w/ iono model w/ tropo model	$ \begin{array}{c} \hline \\ HDOP = 1.2 \end{array} \qquad \begin{array}{c} \hline \\ HDOP = 2.5 \end{array} \\ \hline \\ HDOP = 2.5 \end{array} \\ \hline \\ Horizontal positioning error \\ \sigma_P = HDOP \ x \ UERE \ [m] \end{array} $								
	UERE	6.7 m	3.3 m		$\sigma_{P} = 2.5 \text{ x } 3.3 \text{ m} = 8.3 \text{ m}$								
	High precision GNSS requires reduction or elimination of as many errors as possible												

2. MULTI-FREQUENCY GNSS ERROR MITIGATION

$$d_{I}(E) = f_{M}(E) \cdot \frac{40.31}{f^{2}} \cdot \text{TEC}$$

8 iono parameters
Part of NavMsg

Error reduction by 50%

lonosphere-free pseudo-range

$$PR^* = \frac{f_1^2}{f_1^2 - f_2^2} PR_1 - \frac{f_2^2}{f_1^2 - f_2^2} PR_2$$

- Removes almost all iono delays
- Measurement errors are increased

"Normal" ionospheric conditions

Range correction computation

$$d_{I}(f_{1}) = \left(\frac{f_{2}^{2}}{f_{2}^{2} - f_{1}^{2}}\right)(PR_{1} - PR_{2})$$

Removes almost all iono delays

3. CODE-BASED AUGMENTED GNSS ERROR MITIGATION

3. CODE-BASED AUGMENTED GNSS SYSTEM CHARACTERISTICS

15 Rohde & Schwarz

4. CARRIER-BASED HIGH PRECISION GNSS ERROR MITIGATION

 $\Delta \mathsf{R}^{i} = \mathsf{R}_{1}^{i} - \mathsf{R}_{2}^{i}$

Eliminated	Satellite clock error	Eliminated
Reduced	Satellite orbit error	Reduced
Reduced	lonospheric delay	Reduced
Reduced	Tropospheric delay	Reduced
Still present	Receiver clock error	Eliminated
Still present	Noise and multipath	Still present

4. CARRIER-BASED HIGH PRECISION GNSS SYSTEM CHARACTERISTICS

4. CARRIER-BASED HIGH-PRECISION GNSS RTK VS. PPP: BASIC PRINCIPLE

computes a highly accurate position

Real Time Kinematic (RTK) **GNSS** constellation (3) **Reference** station User receiver collects carrier phase collects carrier observations phase observations 2 Base station observations are sent to user (OSR) **RTK** reference station GNSS user User receiver combines its own observations with those received from the reference station and

4. CARRIER-BASED HIGH PRECISION GNSS RTK VS. PPP: BASIC PRINCIPLE

GNSS-BASED POSITIONING METHODS SUMMARY

	Standalone GNSS		Augmented GNSS		High-precision GNSS					
P Y	SF	MF	DGNSS	SBAS	РРР	PPP-RTK	RTK			
Correction type			OSR	SSR	SSR	SSR	OSR			
Observable	Code	Code	Code	Code	Carrier	Carrier	Carrier			
Service area	Global	Global	Local/Regional	Regional	Global	Global	Local/Regional			
Error mitigation/modelling/correction										
Satellite clock error	x	x	\checkmark	\checkmark	✓	1	✓			
Satellite orbit error	x	x	✓	\checkmark	✓	1	✓			
Ionospheric delay	x	\checkmark	\checkmark	\checkmark	x	1	✓			
Tropospheric delay	x	x	✓	x	x	1	✓			
Accuracy	5 - 10 m	3 - 5 m	1 - 3 m	1 - 3 m	dm	< 10 cm	1 cm + 1 ppm			

AGENDA

- ► High precision enables emerging applications
- Basic principles of high precision GNSS
- ► How a high precision GNSS network works
- ► Testing high precision GNSS
- Summary and Conclusions

GNSS TECHNOLOGY FOR ADAS

High Accuracy Positioning Sub-decimeter Level

Absolute Positioning Other technologies only provide differential positioning

0

High maturity (SOTIF-like) reached and demonstrated in applications for civil aviation. Key for ISO26262 safety argumentation

Global Coverage GNSS Availability **EVERYWHERE**

Independency This technology is independent from other sensors in the car

Velocity

GNSS provides

absolute velocity

of the vehicle

Orientation **GNSS** provides orientation values when integrated with IMU

its worth

SAFE AND HIGH ACCURACY POSITIONING FOR AUTOMOTIVE

GMV GSharp

SAFE HIGH-ACCURACY RELIABLE POSITIONING FOR AUTOMOTIVE

SAFE AND HIGH ACCURACY POSITIONING FOR AUTOMOTIVE

2. POSITIONING ENGINE

< 10cm Horizontal Accuracy p95 < 0.25º **PPP+RTK** Heading Accuracy p95 < 30sec Convergence Time 10⁻⁷ /h Integrity Risk < 0.1 m/s Horizontal Velocity Accuracy

With <u>mass-market</u> automotive GNSS receiver!

HOW? TEST & VALIDATION

2. POSITIONING ENGINE

GMV has thoroughly tested their PE solution across several driving campaigns accomplished in the last two years

Tens of thousands of km recorded

0000

safety

PE

Fault Free and Fault included Analysis

Include massive fault testing to insert errors in the GNSS measurements \rightarrow GNSS RF signals Simulator needed!

sys

SW

AGENDA

- ► High precision enables emerging applications
- Basic principles of high precision GNSS
- ► How a high precision GNSS network works
- Testing high precision GNSS
- Summary and Conclusions

SUMMARIZING THE SYSTEM

29 Rohde & Schwarz

Webinar: How High Precision GNSS enables new automotive applications

and clock corrections (PPP) ..

HIGH PRECISION GNSS TESTING CONSIDERATIONS

Testing GNSS receiver in a reproducible and controllable environment

Ability to inject specific "errors" and corresponding correction data

Ability to test the system as a "Black Box" on component or Full Vehicle level

Ability to test with correction data from a live network with live GNSS

Reduce the amount of time and resources required by more efficient testing

Legend

AGENDA

- ► High precision enables emerging applications
- Basic principles of high precision GNSS
- ► How a high precision GNSS network works
- ► Testing high precision GNSS
- Summary and Conclusions

SUMMARY AND CONCLUSIONS

High Precision GNSS positions based on RTK/PPP can achieve the requirements for emerging automotive applications.

4 key pillars of the technology are **High Precision**, **Global availability**, **Integrity** and **Continuity** of service

Testing in a controlled and reproducible environment is important to accelerate high precision GNSS time to market and minimize your investments.

TEST IT TRUST IT

www.rohde-schwarz.com/automotive