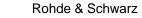
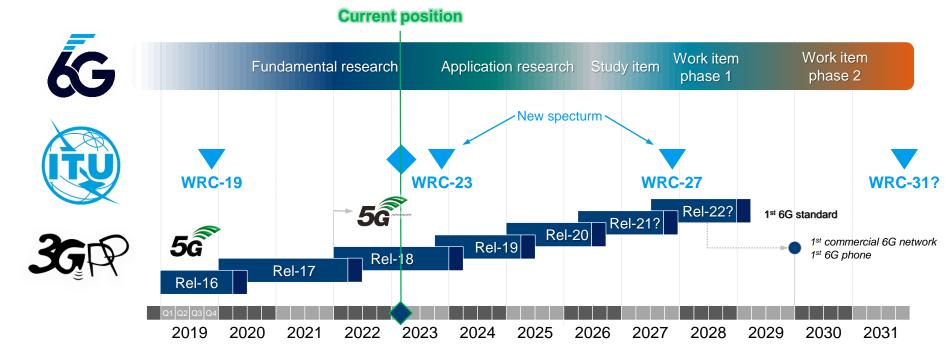
R&S 6G TRIALS AND TEST SOLUTIONS

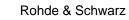
Lilei Wang, Technology Manager


ROHDE&SCHWARZ

Make ideas real



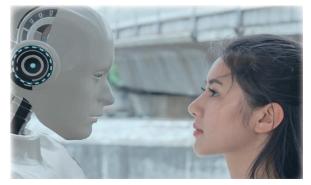
AGENDA


- 5G Evolution and 6G Timeline
- 6G Research Areas
- World Wide 6G Activities & Co-Operations
- R&S Test Solutions
- Test Results (RIS)

6G EVOLUTION

6G standardization/research may be progressed more quickly than expected

USE CASES


6G application is highly extended to multiple domains

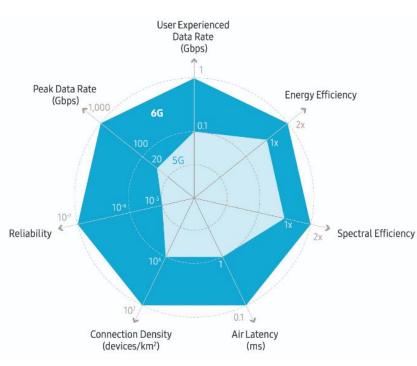
Immersive XR

Holographic

Intelligent interaction

Sensing

Digital Twin

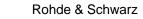

Full coverage

Rohde & Schwarz

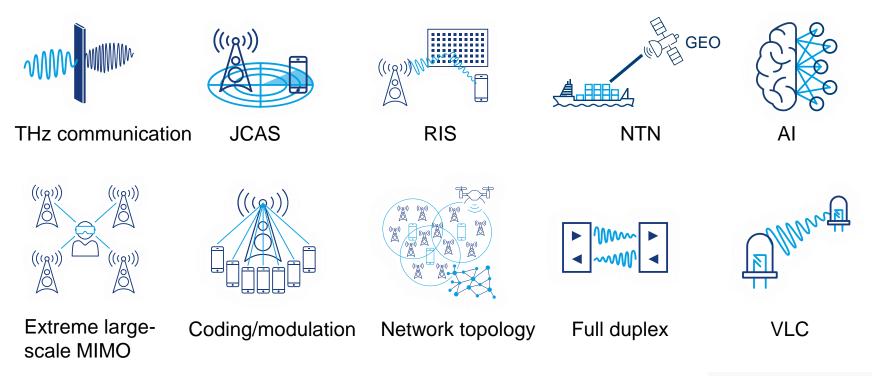
Source: IMT-2030 whitepaper

KEY PERFORMANCE REQUIREMENTS

Key performance indicators (KPI)	5G	6G	Improvement factor
Peak data rate (in Gbps)	10	100 to 1000	10 to 100
User experienced data rate (in Gbps)	0.1	1 to 10	10 to 100
User plane latency (in ms)	1	0.1	10
Connection density (in devices/km ²)	10 ^e	107 to 108	10 to 100
Reliability	99.999%	99.99999%	100
Energy efficiency	1×	$5 \times$ to $100 \times$	5 to 100
Spectral efficiency	1×	2×	2
Positioning (in cm)	20 to 100 in 2D	1 in 3D	20 to 100
Jitter, i.e. latency variations (in µs)	-	0.1 to 1000	-

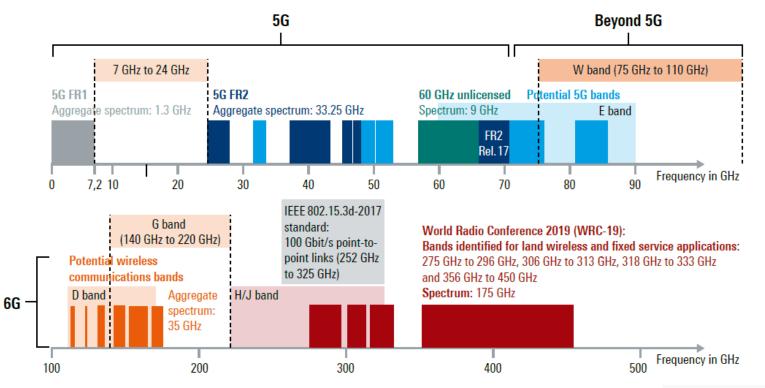

Source: Samsung whitepaper

Source: R&S whitepaper



AGENDA

- 5G Evolution and 6G Timeline
- 6G Research Areas
- World Wide 6G Activities & Co-Operations
- R&S Test Solutions
- Test Results (RIS)


6G RESEARCH AREAS

THZ - SPECTRUM

Usually 100GHz – 10THz is the range of THz spectrum and lower band is more prioritized

Rohde & Schwarz

THZ - SCENARIOS

Following is desirable scenarios but THz may be extended to more usages, like imaging

Backhaul/fronthaul links

- Ultra-high-speed communications
- Backhaul/fronthaul P2P connections
- Infrastructure in remote locations

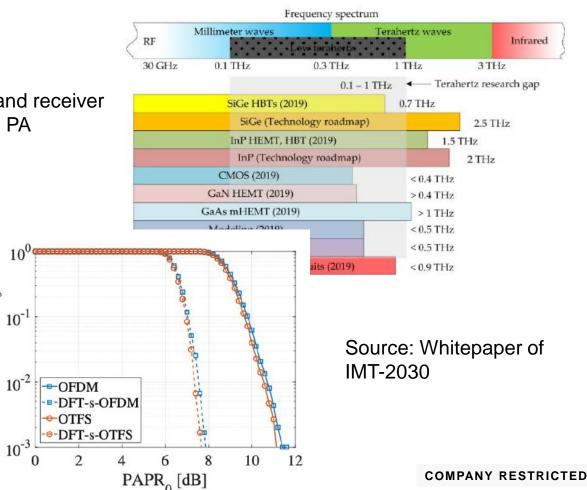
Kiosk and intra-device communications

- Ultrafast download of prefixed content (e.g. UHD video, music) at specific locations (vending machines, train stations)
- Chip-to-chip communications

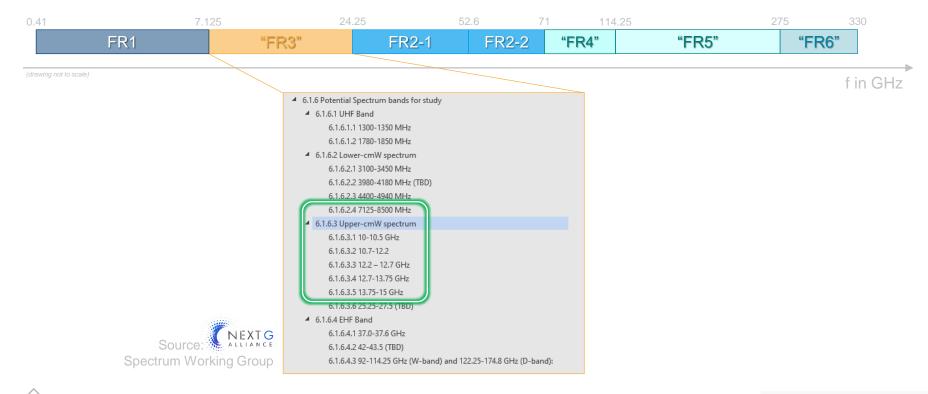
Wireless link in data centers

 Communications inside data centers: remote memory can increase design flexibility and reduce cost by extending CPU memory distance

THZ- CHALLENGES

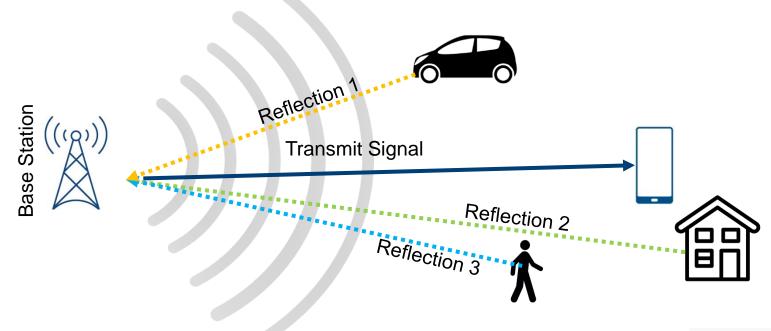

- Semi-conductor material -
- Key component of transmitter and receiver -

Pr(PAPR>PAPR₀)

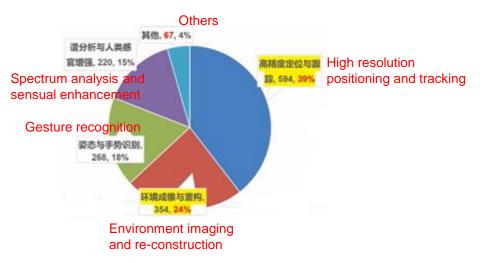

 10^{-1}

 10^{-3}

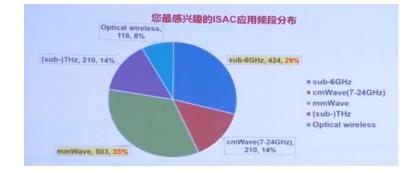
- Mixer, multiplier, LNA and PA
- Modulation/Demodulation -
- Waveform -
- AD/DA -
- MIMO/beam management -
- Channel coding -
- Channel modeling -



DON'T FORGET "FR3"

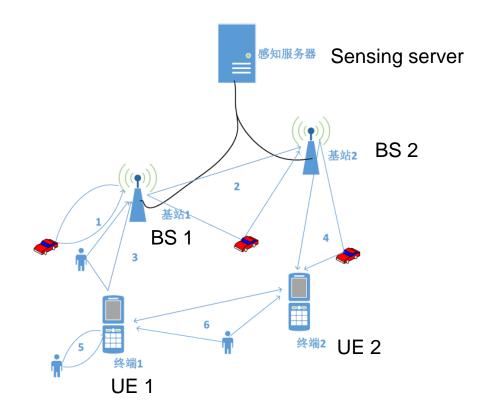


JCAS - CONCEPT

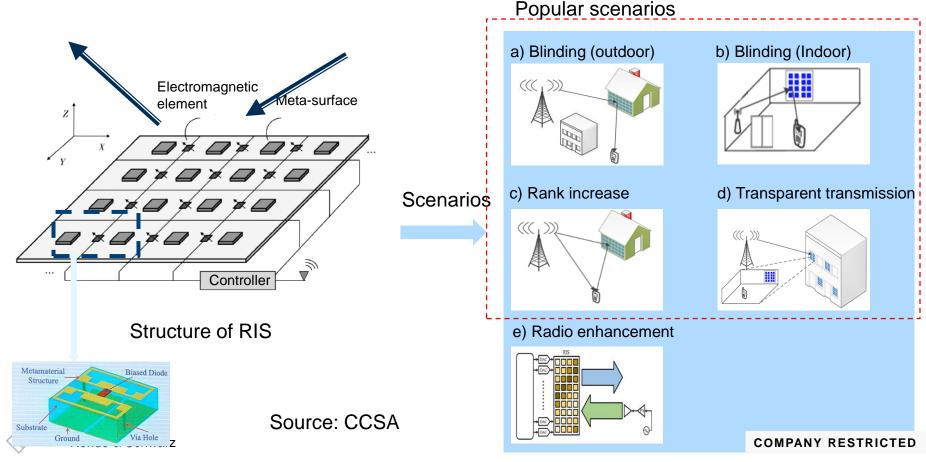

Base station or UE senses the objects (passive or active)

JCAS – USE CASE AND FREQUENCY

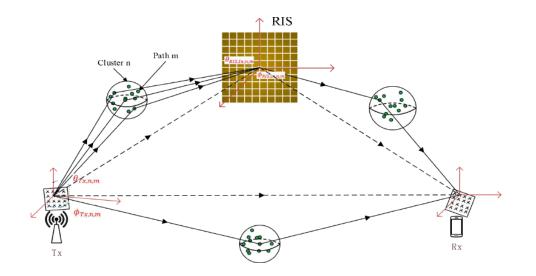
- Positioning and tracking is No.1 use case that people is interested in
- Transportation and UAV detection may be first scenario to be deployed



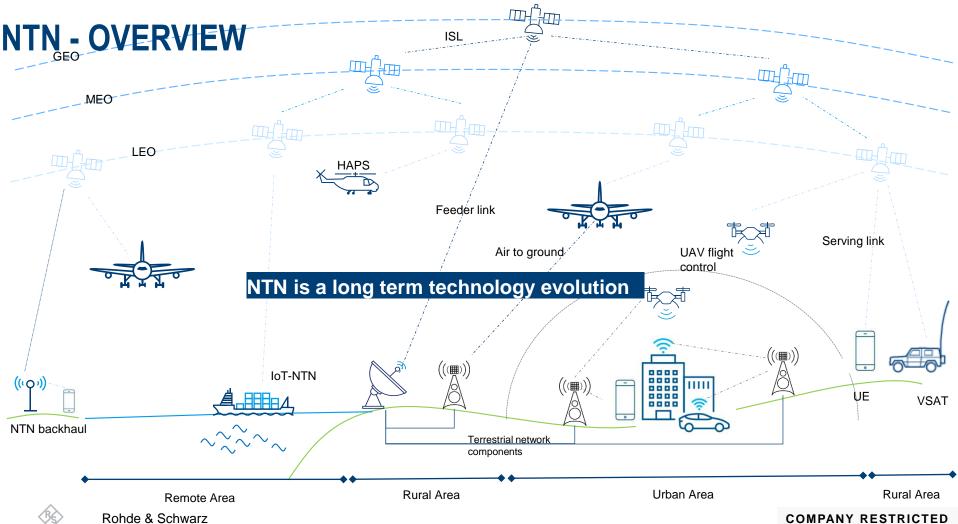
- mmWave frequency is more popular
- Sub-10GHz is also good frequency range for JCAS for coverage purpose


JCAS - CHALLENGES

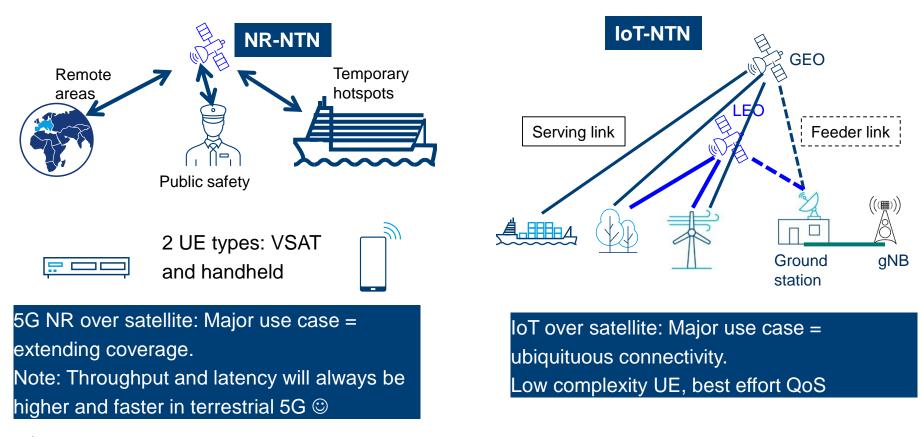
- Air interface design
 - Waveform
 - Beamforming
 - Interference cancellation
 - Positioning
 - Sensing algorithm
- Architecture and networking design
- Hardware design
 - Full duplex issue
 - Isolation circuit
- Channel modeling


Source: IMT-2030 whitepaper

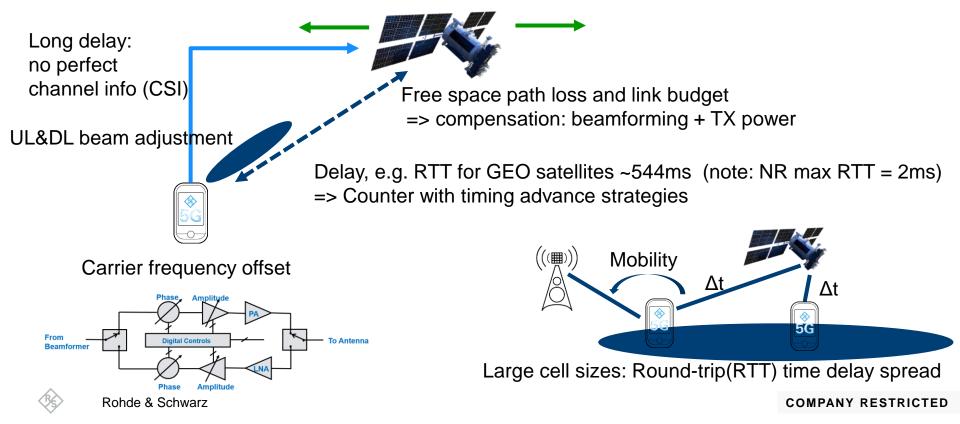
RIS - STRUCTURE AND SCENARIOS



RIS - CHALLENGES


- Hardware/material
- Protocol design (dynamically control RIS)
- RF performance
- Architecture and networking
- Channel modeling
- Engineering issue (like deployment, power supply)

Channel modeling (from whitepaper published by RISTA)


NTN - TWO FACETS

NTN - CHALLENGES

Doppler shift due to UE and/or gNB mobility => use location/orbit info to compensate Doppler

AI – APPLICATION AREA

Spectrum sharing **Optimal** & access resource allocation

> Coverage & capacity optimization

Spectrum intelligence and adaptive resource management

> MACHINE LLARNING FOR FUTURE WIRELESS COMMUNICATIONS

> > **Machine Learning**

Copyrighted Material

Cooperative Edge Self-interference Caching cancellation Context-aware cross-Digital Location Verification layer optimization Frontend

Network Intelligence and adaptive system optimization

MIL IEEE PRESS

& Coding based on ML Non-linear **MIMO** detector

prediction

Channel decoding

crowd sensing

Channel equalization & signal detection

Adaptive Modulation

Traffic & mobility Data transfer mobile

Energy

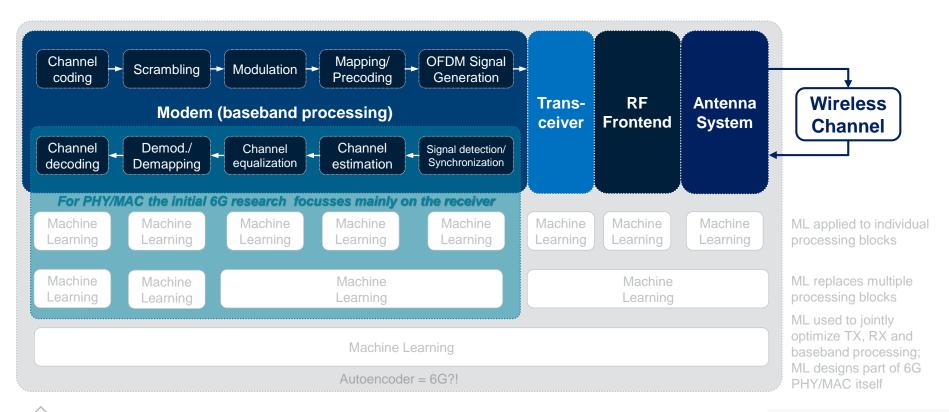
efficiency optimization

Channel prediction

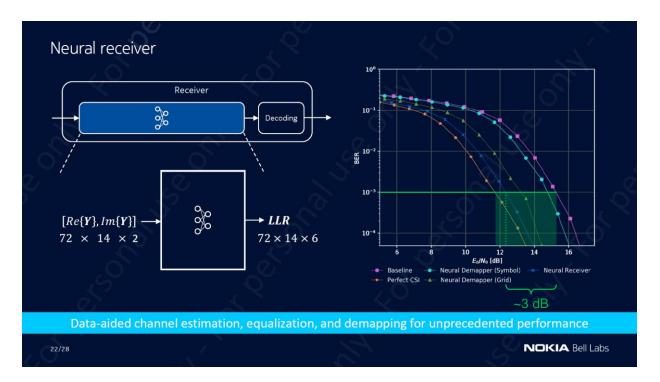
WILEY

Transmission Intelligence and adaptive baseband processing

Rohde & Schwarz

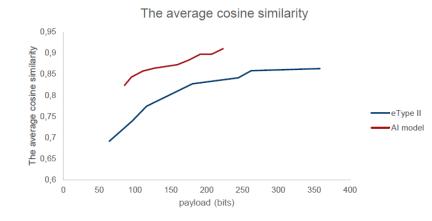

AI - STANDARDIZATION STATUS IN 3GPP

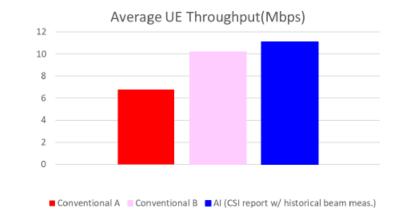
SI: study item, WI: work item


	Rel-15	Rel-16	Rel-17	Rel-18
RAN1				AI/ML for NR Air (SI)
RAN2				
RAN3			Data collection for NR & EN-DC (SI)	AI/ML for NG-RAN (WI)
SA1				AI/ML Model Transfer (WI)
NWDAF introduced	NWDAF introduced	eNA (WI)	eNA Ph.2 (WI)	eNA Ph.3 (WI)
				5G System support for AI/ML-based service (WI)
SA3				
SA4				AI/ML for media (SI)
SA5			eMDAS (WI)	AI/ML management (WI)
SA6				ADAES (SI)

Source: Samsung 6G forum

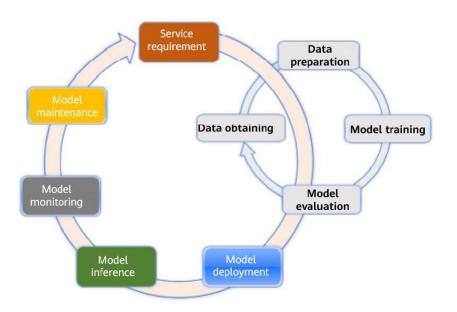
AI – APPLICATION FOR RADIO/BASEBAND




AI – HELPING CHANNEL ESTIMATION

Source: https://aiforgood.itu.int/events/the-road-towards-an-ai-native-air-interface-for-6g/ [Nov 2020]

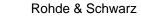
AI – HELPING CSI COMPRESSION, BEAM MANAGEMENT AND POSITIONING



LOS	Positioning Accuracy @90%	
Baseline LOS	6.447m	
AI/ML LOS	0.353m	

Source: above results are from RAN1 contributions of VIVO, NTT DCM and Huawei, respectively

AI - CHALLENGES


- AI model lifecycle management
 - Signalling procedure, RAN functions
- Computing resources
 - May impact existing hardware design
 - Issue of power consumption, complexity for devices
- Dataset construction
- AI model generalization
- Network architecture
- Trustiness/security

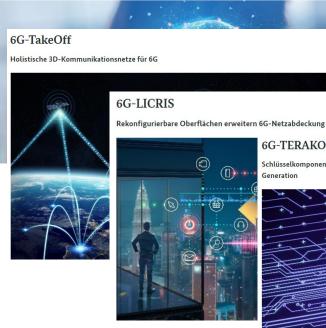
Source: 6GANA whitepapers

AGENDA

- 5G Evolution and 6G Timeline
- 6G Research Areas
- World Wide 6G Activities & Co-Operations
- R&S Test Solutions
- Test Results (RIS)

COOPERATION BETWEEN R&S AND 6G BODIES

R&S closely cooperates with different standardization bodies in the world



EUROPE

R&S is actively involved in different 6G projects funded by BMBF in Germany

6G-ANNA

Ganzheitliche Ansätze für Mobilfunknetze der 6. Generation

Bundesministerium für Bildung und Forschung

This Link provides more information

6G-ADLANTIK

Laser-Architekturen zur Nutzbarmachung des Terahertz-Frequenzbereichs für die 6G-Kommunikation

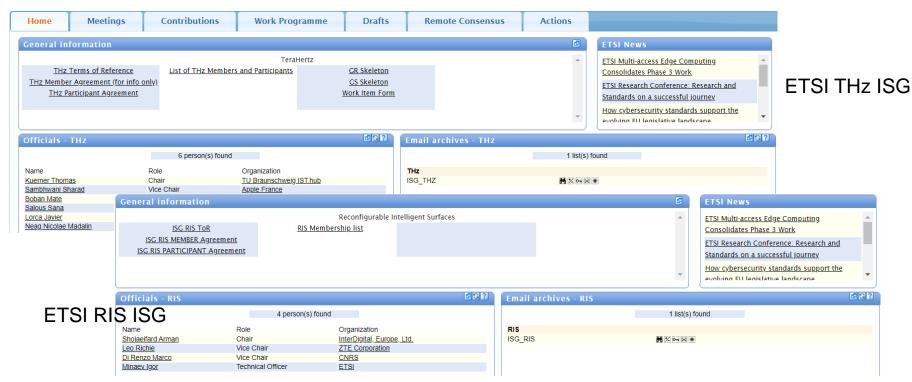
KOMSENS-6G

Perzeptive Kommunikationsnetzwerke mit integrierter Funk-Sensorik für die 6. Generation des Mobilfunks

Perzeptive und sensorische Kommunik im automatisierten Fahren oder in der

COMPANY RESTRICTED

6G-TERAKOM


Schlüsselkomponenten der Terahertz-Kommunik

R&S is actively involved in ETSI 6G standardization

EUROPE

R&S is consistently contributing to ITU standardization

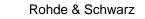

Munich / 11-Jan-2023

Rohde & Schwarz drives 6G with sub-THz channel propagation measurements

The development of sub-THz communications as envisioned for 6G will only be possible with a solid understanding of the properties of electromagnetic wave propagation. The new frequency range between 100 GHz and 330 GHz gains worldwide interest and thus has been the focus of recent Rohde & Schwarz measurement campaigns. The company's findings have contributed to the report of the ITU-R Working Party 5D (W5PD), which will provide information to the International Telecommunication Union (ITU) World Radio Conference 2023, where frequency bands beyond 100 GHz are expected to be discussed and considered for allocation.

Rohde & Sunwarz

Rohde & Schwarz and FormFactor support the University of Texas at Austin in research on improved RF switches for 5G and 6G



The R&S ZNA connected to R&S ZC170 frequency extenders allows S-parameter measurements in the Dband. (Image: Rohde & Schwarz)

KOREA

R&S closely cooperates with partners (e.g., KAIST, ETRI, KRISS) to test D-band/G-band THz based on up/down frequency converters & signal generator/analyzer

JAPAN

R&S closely cooperates with partners (e.g., DCM) to test mmWave/THz

DOCOMO and Rohde & Schwarz cooperate in pioneering beyond 5G with frequency bands up to 150 GHz

NTT DOCOMO INC. and Rohde & Schwarz have joined forces to set up the world's first ultra-wideband channel sounder for mobile communications exceeding 100 GHz. They conducted radio wave propagation experiments at frequencies up to 150 GHz. The frequency bands from 100 GHz to 300 GHz are expected to enable further high-speed and large-capacity communication for the next generation beyond 5G.

DOCOMO and Rohde & Schwarz cooperate in pioneering beyond 5G with frequency bands up to 150 GHz | Rohde & Schwarz (rohdeschwarz.com)

R&S cooperates with partners on 6G topics like JCAS, RIS and THz

Rohde & Schwarz and China Mobile Research Institute collaborate on 6G JCAS research and early validation

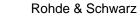
The China Mobile Research Institute and Rohde & Schwarz have joined forces to research and validate joint communication and sensing (JCAS). They plan to use the latest R&S AREG800A automotive radar echo generator from Rohde & Schwarz as an object simulator in a JCAS testing solution, thereby accelerating the research and development of JCAS and readying it for industrialization.

RIS tests with partners

R&S cooperates with partners to verify 6G technologies

MediaTek Powers World's First Satellite 5G NTN Smartphone Communication

MediaTek's collaboration with Rohde & Schwarz demonstrates the potential of 5G NTN technology to bring fast and reliable 5G connectivity everywhere via satellite


🕒 Aug 16, 2022 - 9:00 PM

HSINCHU, Taiwan – August 16, 2022 – <u>MediaTek</u> reached a new 5G milestone by powering a smartphone with a 5G Non-Terrestrial Network (NTN) connection in a lab environment for the first time. Through a transfer of data to ITRI's Next Generation NodeB network (gNB) test over a Low Earth Orbit (LEO) satellite channel emulated in collaboration with Rohde &

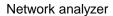
AGENDA

- 5G Evolution and 6G Timeline
- 6G Research Areas
- World Wide 6G Activities & Co-Operations
- R&S Test Solutions
- Test Results (RIS)



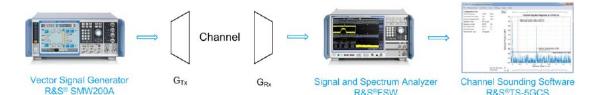
THZ CONVERTER

R&S has released a series of THz converters (right) to match different instrument (left)

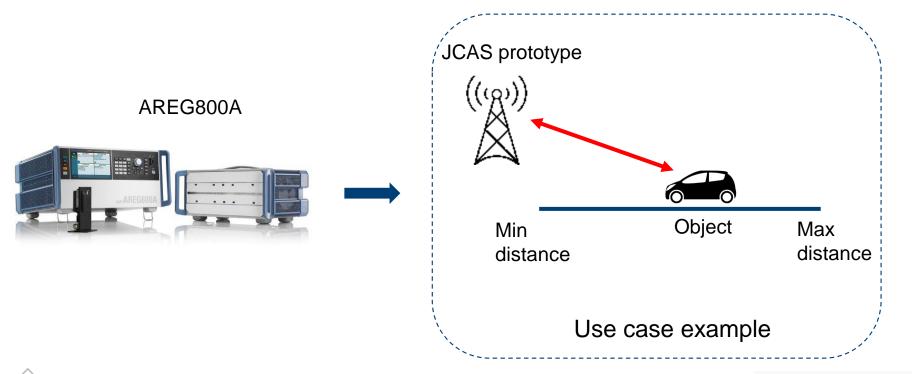

Signal generator/Analyzer

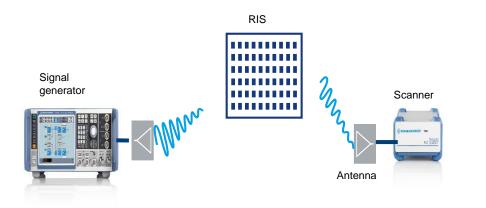
RPG FS-Zxx Harmonic mixers (up to 325GHz)

R&S®ZCxxx millimeterwave converters (Up to 1THz)

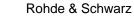

THZ CHAMBER/CHANNEL SOUNDING

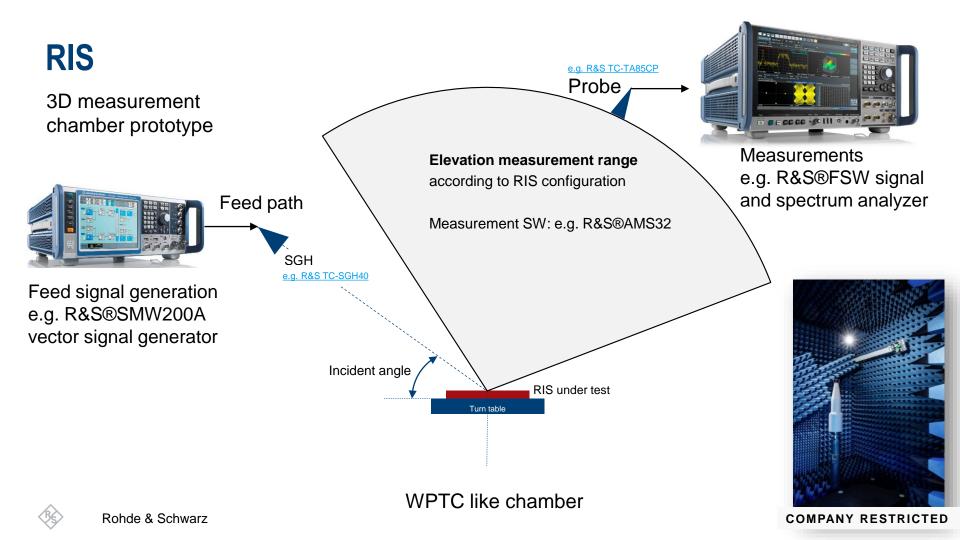
D-band based OTA test chamber


R&S TS-5GCS is a software tool to do channel sounding

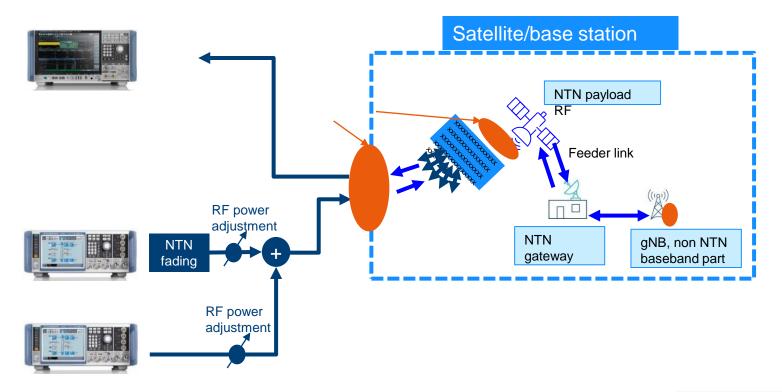


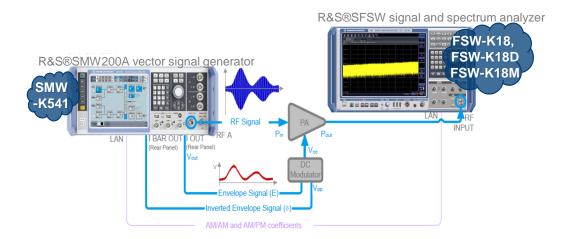
Object simulator is available and improvement for JCAS test is ongoing


Part of existing instruments are available to test basic RIS performance while other test solutions like chamber are under optimization



Available to test RSRP like performance


ATS1800M like chamber



Feasible to use existing signal generator/analyzer to test RF performance of satellite or UE

Development of T&M solutions on supporting AI/ML research is ongoing

DPD optimization

Neural receiver to improve UL MU-MIMO performance (demo at Barcelona MWC 2023)

6G CLASSROOM

R&S shows viewpoints on 6G topics in public media

#Think Six - Is it time for wireless communication to get smart(er) with AI/ML? Part 1.

This video introduces the background theory and terminology of AI and ML.

#ThinkSix - Spectrum for 6G

This video runs through the frequencies from 7.125 GHz to 24.25 GHz, highlighting the bands with the maximum potential for next-generation wireless services.

#Think Six - Which new spectrum for 6G? A practical review

Based on a need for available spectrum and experiment licenses, this video explains the reasons for candidate frequencies for fundamental 6G research in the D band (110-

#Think Six - Channel measurements in the D-band

High frequencies completely new to mobile radio mean that researching channel characteristics to determine the effects on transmitted signals of propogation delays re-

https://www.rohde-schwarz.com/us/solutions/test-and-measurement/wireless-communication/cellular-standards/6g/6g-overview 253278.html

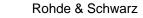
6G WHITEPAPERS

5G NTN TAKES FLIGHT: TECHNICAL OVERVIEW OF 5G NON-TERRESTRIAL NETWORKS

FUNDAMENTALS OF THz TECHNOLOGY FOR 6G

R&S published NTN and THz whitepapers

SEE YOU SOON

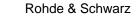

R&S is planning to show 6G demos

Welcome to visit our booth!

Rohde & Schwarz

AGENDA

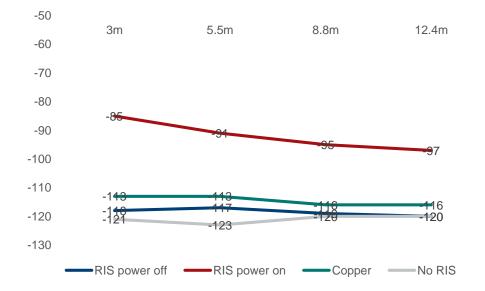
- 5G Evolution and 6G Timeline
- 6G Research Areas
- World Wide 6G Activities & Co-Operations
- R&S Test Solutions
- Test Results (RIS)


INDOOR SCENARIO

Open Area (focused)

L type corridor

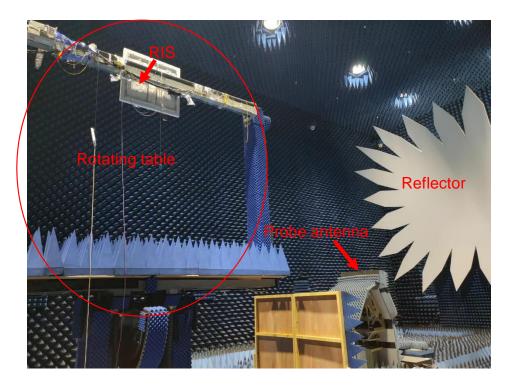
TEST RESULTS IN FR1


3.5G Hz, Indoor Open Area, SG-RIS distance = 1m

- RIS gain achieves 20dB in case of short distance of reflecting
- The gain is largely reduced in case of longer distance of reflecting
- RIS with power off can also obtain certain gain compared with no RIS case

TEST RESULTS IN FR2

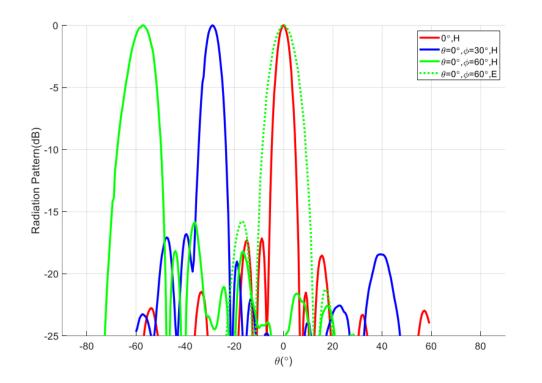
25G Hz, Indoor open area, SG-RIS distance = 4.64m


- More than 25dB gain can be achieved but the gain reduces a little bit with the increase of SG-RIS distance
- The gain is more stable compared with FR1

OUTDOOR SCENARIO

- For FR1, 4-5dB gain of RIS is obtained
- For FR2, 10dB gain of RIS is obtained and the gain is a little larger with increase of RIS-receiver distance
- Both of them shows quite smaller gain compared with indoor scenario.

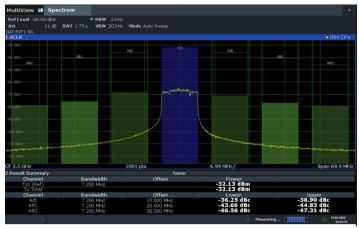
CHAMBER SETUP IN FR1

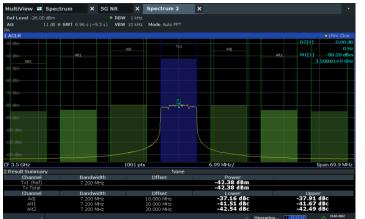

Chamber

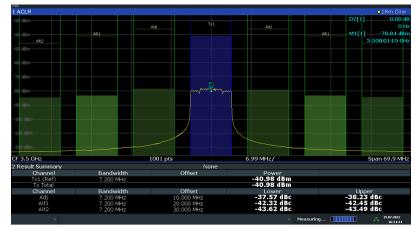
- > CATR
- Chamber size: LxWxH = 20m x 10m x 10m RIS
- Size = 860mm*860mm (4 panels)
- Cell size is 20x20
- ➤ 3.5GHz frequency
- > 200MHz bandwidth (3.4GHz-3.6GHz)
- Hybrid (with FPGA controller)
- 2 bit control accuracy

Instrument

- SMW200A
- ► FSW43
- Signal setting
- SSB only
- > 30KHz SCS
- ➤ 3.5GHz
- 6dBm level of output power

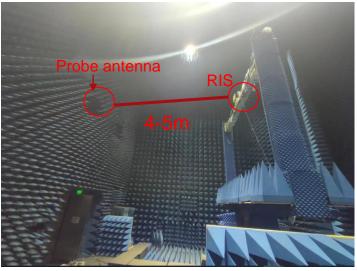

RESULTS ON ANTENNA PATTERN




- Larger the reflected beam angle is, larger beam width is
- 0° 0° case seems a little better than 0° -30° and 0° - 60° cases from side lobe point of view
- The beam is not narrow as we expected

ACLR TEST IN FR1

Impinging beam = 0° , reflected beam = 0°



Impinging beam = 0° , reflected beam = 30°

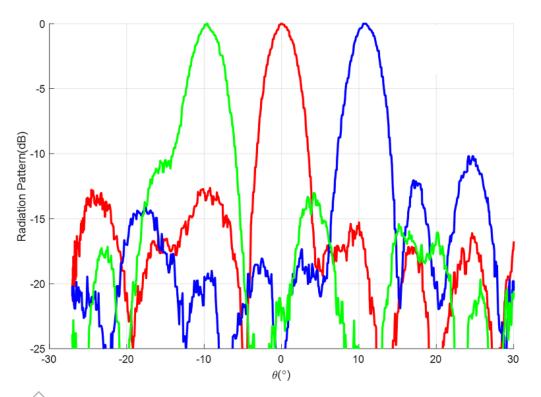
Impinging beam = 0° , reflected beam = 60°

- 37 dBc is not good enough comparing with -45dB requested by base station

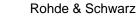
CHAMBER SETUP IN FR2

Antenna of feed signal and RIS are combined

Chamber


- Direct far field
- Chamber size: LxWxH = 20m x 10m x 10m RIS
- Size = 180mm*180mm (4 panels)
- Cell size is 32 x 32
- 25GHz frequency
- > 23.8GHz-25.8GHz bandwidth
- Hybrid (with FPGA controller)
- 1 bit control accuracy

Instrument


- > SMW200A
- ➢ FSW43
- > VNA
- ➢ PA(0.5w)
- > LNA
- Signal setting
- SSB only
- > 120KHz SCS
- > 25GHz
- 6dBm level of output power

RESULTS ON ANTENNA PATTERN

The side lobe is still a problem

ACLR TEST IN FR2

Initial ACLR is about -19dBc/ -16.xdBc based on different RIS but both of them are worse than requirement of base station.

- Only SSB is transmitted

		👷 🖽 🗔 🎝 🕐 🎞 🗄			Cardwidth Eartha
ultiView III Spectrum 2	X Spectrum X	E e se e e e e e e e e e e e e e e e e e	1.0 kHz 🖉 🗙		Harton
aafLevel-S4.00 d6m ut 0 a8 S1W1 6.99 μ	PASW 1 kHz VBW 10 kHz Mode Auto Sweep				143 0 M
				02(1) 0.00 dB 0 Hz	Value 2 Hore Manual
= <u>H2</u>				 M1[1] -133.71 dBm 	Value II.e.
an					Corney 1 1714 Págrasi
			When		Surrey Teres
		Masagar Marsold	Martin and a star and a		
	and the motor we be popul				harderich
25.0 GHz		1001 pts	6.99 MHz/	Span 69.9 MB	4 contra
Chernel Txl (Ref)	Bandwidth 7,200 MHz	Offset	Power -72,40 dBm -72,40 dBm		2 55
Tx Total Channel	Bandwidth 7.200 MHz	0(feet 10,000 MHz 20,000 MHz	-19.d4 dBc	-20.02 dBc -26.25 dBc	Quyerener
Adj Alti Alt2	7.200 MHz 7.200 MHz	20.000 MHz 30.000 MHz	-25.66 dBo -25.99 dBo	-26.24 dBc	* ***

Table 9.7.3.3-1: BS type 2-O ACLR limit

BS channel bandwidth of lowest/highe st carrier transmitted BWChannel (MHZ)	BS adjacent channel centre frequency offset below the lowest or above the highest carrier centre frequency transmitted	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit (dB)				
50, 100, 200, 400, 800, 1600, 2000	BW Channel	NR of same BW (Note 2)	Square (<u>BW_{Config})</u>	28 (Note 3) 26 (Note 4) 24 (Note 5)				
NOTE 1: BWchannel and BWconfig are the BS channel bandwidth and transmission bandwidth configuration of the								
lowest/highest carrier transmitted on the assigned channel frequency.								
NOTE 2: With SCS that provides largest transmission bandwidth configuration (BWConfig).								
NOTE 3: Applicable to bands defined within the frequency spectrum range of 24.25 – 33.4 GHz								
NOTE 4: Applicable to bands defined within the frequency spectrum range of 37 – 52.6 GHz								
NOTE 5: Applicable to bands defined within the frequency spectrum range of 52.6 – 71 GHz.								

ACLR requirement of BS type 2-O based on 3GPP 38104

Thank you very much

ROHDE&SCHWARZ

Make ideas real

