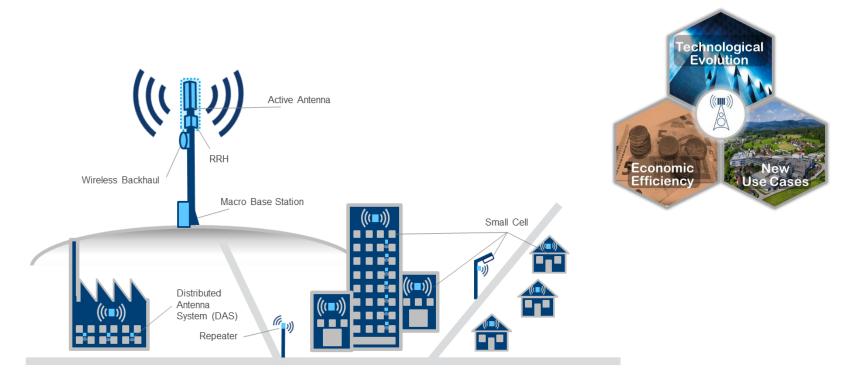
FROM LAB TO LAUNCH: TESTING IN NETWORK INFRASTRUCTURE / RADIO UNIT DEVELOPMENT

Bryant Hsu Product Manager Business Development & Marketing Dept.

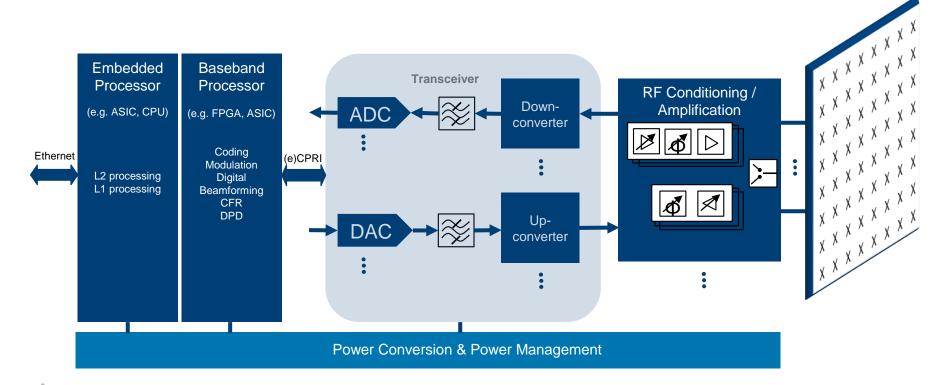
ROHDE&SCHWARZ


Make ideas real

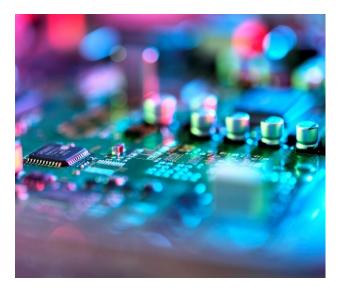
- Driving Beyond Limitation for Network Infrastructure Development
- Digital Design and Electronic Circuit Testing
- ► RF Testing and System Verification
- Production Testing
- ► Conclusions

- Driving Beyond Limitation for Network Infrastructure Development
- Digital Design and Electronic Circuit Testing
- ► RF Testing and System Verification
- Production Testing
- ► Conclusions

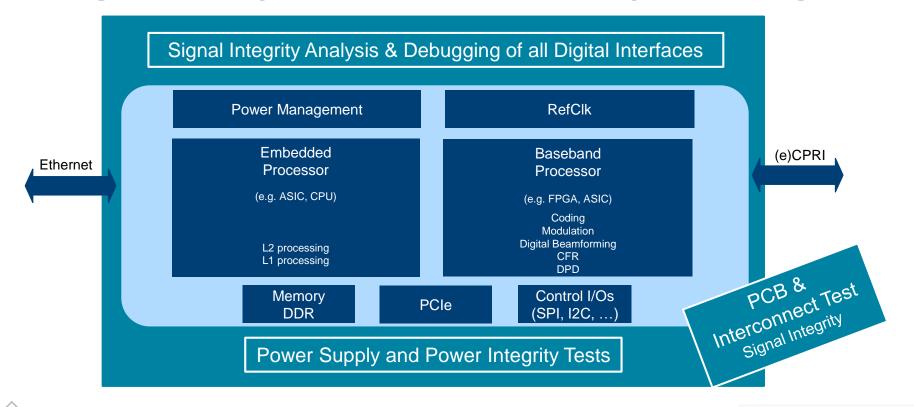
NETWORK INFRASTRUCTURE MEET YOUR INDUSTRY DRIVERS WITH TAILORED, FUTURE-PROOF T&M SOLUTIONS



INDUSTRY DRIVERS Which Need to Be Reflected by T&M Environment

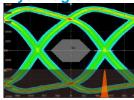


Rohde & Schwarz 5/2/2023 From Lab to Launch: Testing in Infrastructure / RU Development


5G BASE STATION ARCHITECTURE Digital Design, Power and RF Components

- Driving Beyond Limitation for Network Infrastructure Development
- Digital Design and Electronic Circuit Testing
- ► RF Testing and System Verification
- Production Testing
- ► Conclusions

5G BASE STATION ARCHITECTURE The Digital Part: Typical Test Areas for Every New Designs

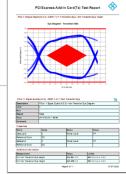


8 Rohde & Schwarz 5/2/2023 From Lab to Launch: Testing in Infrastructure / RU Development

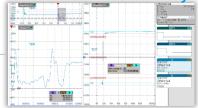
HIGH-SPEED DIGITAL INTERFACES CHALLENGES

INCREASING DATA RATES AND INCREASING LEVEL OF INTEGRATION

Eye Diagram


- Statistical confidence (fast update rate)
- Continuously operating Clock-Data-Recovery (CDR)
- · Mask tests
- Compensation of transmission loss

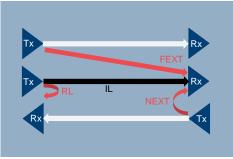
Jitter Analysis and Decomposition


- · Histograms
- Track and Spectrum views
- Eye diagram, BER bathtub
- Step/Frequency response
 - 9 Rohde & Schwarz

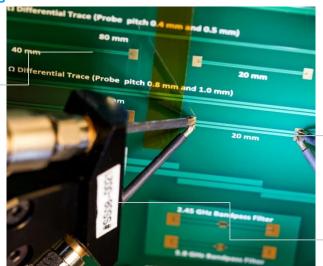
Automated Compliance Test

- Compliance for interface standards
- Test Report

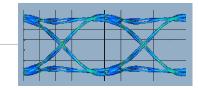
Versatile TDR/TDT Analysis



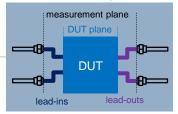
- Differential pulse source
- TDR / TDT analysis
- Guided calibration & measurement
- PacketMicro Probe


5/2/2023 From Lab to Launch: Testing in Infrastructure / RU Development

HIGH-SPEED PCBS AND INTERCONNECTS CHALLENGES INCREASING DATA RATES, DENSE DESIGNS, AND COST PRESSURE


Frequency and Time Domain Analysis

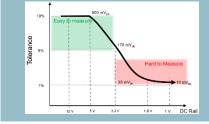
- Reflection and transmission loss
- Near-end and far-end crosstalk
- Impedance matching
- · Timing skew



Signal Domain Analysis

- Channel parameter with emphasis and equalizer
- Eye diagrams and eye mask

De-embedding



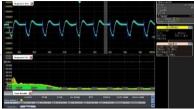
• Fast and accurate de-embedding of test connectors and fixtures

POWER INTEGRITY CHALLENGES

INCREASING POWER RAILS, LOWER SUPPLY VOLTAGES, AND INTERFERENCE DUE TO DENSE DESIGN

The Scope

- · Fast update rate
- Min. vertical scale: 1..2 mV/div in HW at full bandwidth
- Low noise


Specialized Probes

- 1:1, 2/4 GHz Power Rail Probes
- Highest extended offset: +/-60 V
- Browser and solder-in tips
- Portfolio of current probes
- Multi-channel 18 bit power probes
- Unique R&S Probe Meter (high accuracy DC voltmeter)
- 5/2/2023 From Lab to Launch: Testing in Infrastructure / RU Development

Analysis and Statistics

- Ripple, Load step response
- Power-up/down, Sequencing
- Drift over temperature and input voltage
- R&S Probe Meter for precise DC measurements (0.05%)

FFT debugging

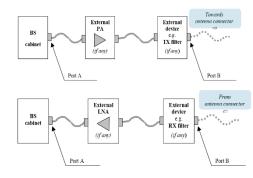
- EMI debugging / harmonic analysis
- · Fast and responsive FFT to detect interferer

- Driving Beyond Limitation for Network Infrastructure Development
- Digital Design and Electronic Circuit Testing
- ► RF Testing and System Verification
- Production Testing
- ► Conclusions

5G NR BASE STATION CONFORMANCE TESTING From Conducted to OTA

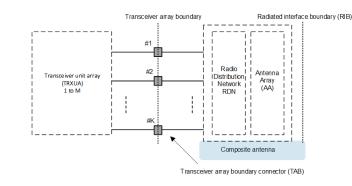
	5G NR 3GPP specification		
38.104	Base station (BS) radio transmission and reception		
38.141 - 1	BS conducted conformance testing chapter 6, 7 and 8		
38.141 - 2	BS radiated conformance testing chapter 6, 7, 8 (OTA)		

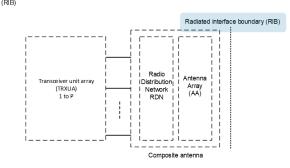
R&S®SMW200A



R&S[®]FSW

Conducted

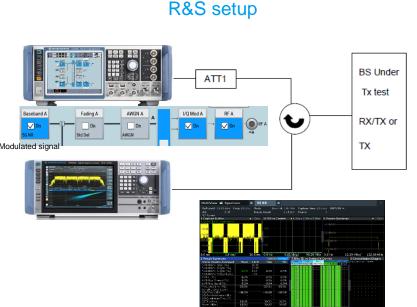

BS type 1-C transmitter/receiver interface


3

General architecture of BS type 1-H

Hybrid

OTA General architecture of BS type 1-0 and BS type 2-0

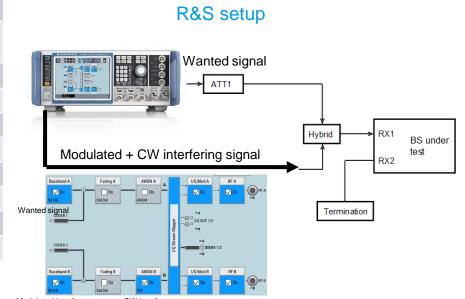

COMPANY RESTRICTED

38.141

TRANSMITTER CHARACTERISTICS CHAPTER 6

Analysis of transmitter characteristics and intermodulation testing with VSG and VSA

	FR1 test model	FR2 test model
BS type	Conducted, Hybrid, OTA	ΟΤΑ
Bandwidth (MHz)	5, 10, 15, 20, 25, 30, 40, 45, 50, 60, 70, 80, 90, 100	100, 200, 400
Duplexing	TDD and FDD	TDD
Test Items	6.2 Base station output power	
	6.3 Output power dynamics	
	6.4 Transmit ON/OFF power	
	 6.5 Transmitted signal quality Frequency error Modulation quality Time alignment error 	
	 6.6 Unwanted emissions Occupied bandwidth Adjacent Channel Leakage Powe Operating band unwanted emissions Transmitter spurious emissions 	· · · ·
	6.7 Transmitter intermodulation	

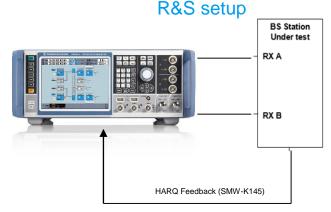


> 14 Rohde & Schwarz 5/2/2023 From Lab to Launch: Testing in Infrastructure / RU Development

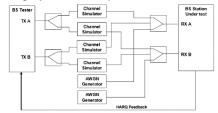
RECEIVER CHARACTERISTICS CHAPTER 7

Generation of all required signals (wanted and interferer) in one instrument for 2 RX

	FR1 test model	FR2 test model
BS type	Conducted, Hybrid, OTA	ΟΤΑ
Bandwidth (MHz)	5, 10, 15, 20, 25, 30, 40, 45, 50, 60, 70, 80, 90, 100	100, 200, 400
Duplexing	TDD and FDD	TDD
Test Items	7.2 Reference sensitivity level	
	7.3 Dynamic Range	
	7.4 In-band selectivity and Blocking	
	7.5 Out-of-band blocking	
	7.6 Receiver spurious emissions	
	7.7 Receiver intermodulation	
	7.8 In-channel selectivity	


Modulated interferer CW interferen

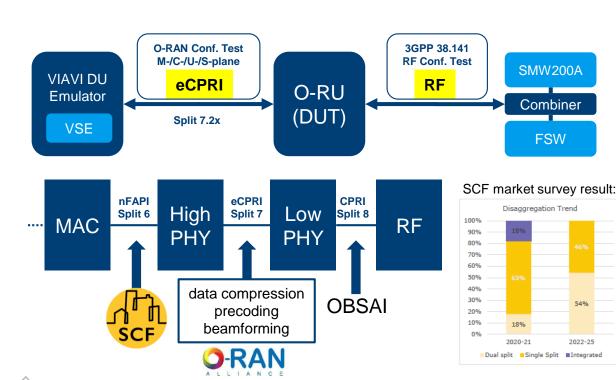
PERFORMANCE CHARACTERISTICS CHAPTER 8


► Signal generation, channel simulation and AWGN generator in one instrument

	FR1 test model	FR2 test model
BS type	Conducted, Hybrid, OTA	ΟΤΑ
Bandwidth (MHz)	5, 10, 15, 20, 25, 30, 40, 45, 50, 60, 70, 80, 90, 100	100, 200, 400
Duplexing	TDD and FDD	TDD
Test Items	 8.2 Performance requirements for PU transform precoding disabled/ena high speed train UL timing adjustment 0.001% BLER repetition Type A Mapping Type B with non-slot transformer msgA for 2-step RA type 	bled
	 8.3 Performance requirements for PU Format 0/1/2/3/4 multi-slot PUCCH Interlaced PUCCH 0/1/2/3 	ICCH
	8.4 PRACH false alarm probability an	d missed detection

6

Measuring system set-up from 3GPP TS 38.141-1

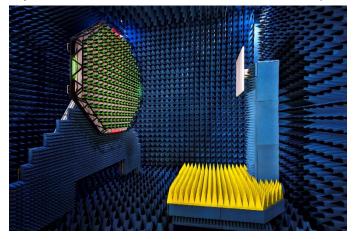


Rohde & Schwarz 5/2/2023 From Lab to Launch: Testing in Infrastructure / RU Development

2Tx/8Rx

O-RU MEASUREMENT SETUP

5G Core O-CU O-DU O-RU))) (((UE


Advantage of split 7.2x

- Flexibility
- Efficiency
- Low latency

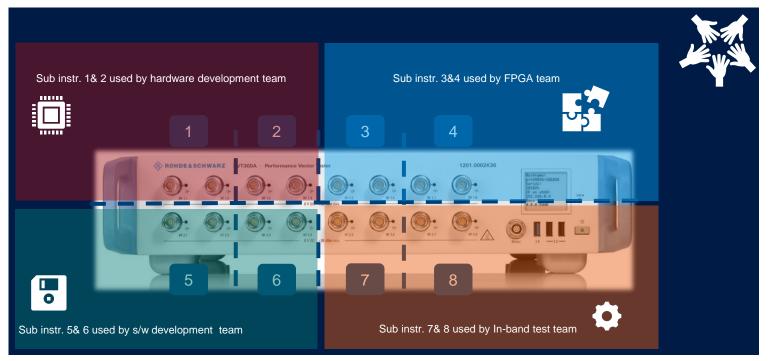
Rohde & Schwata/2/2023 From Lab to Launch: Testing in Infrastructure / RU Development

OVER THE AIR TESTING Overall System Design Is Key for Precise Measurements

FR1 Verify of Massive MIMO devices at mid-band spectrum

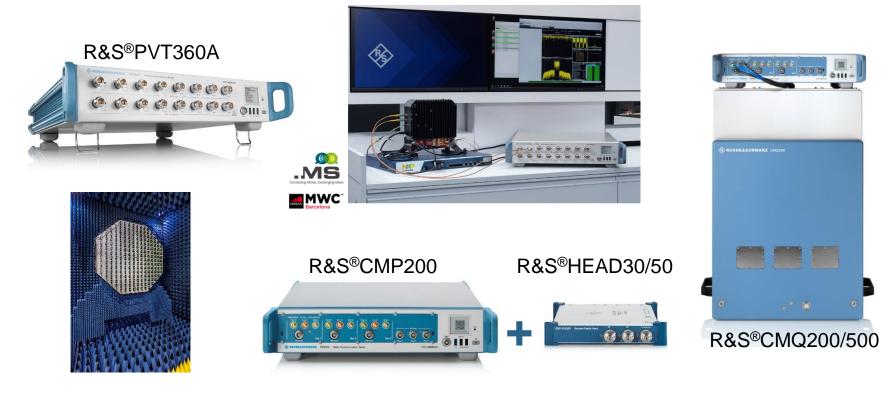
Plane Wave Converter R&S®PWC200

FR2 High quality quiet zone in a compact test system


Ø 30/40cm quiet zone

High shielding effective chamber with CATR (indirect far-field) solution R&S®ATS1800C

- Driving Beyond Limitation for Network Infrastructure Development
- Digital Design and Electronic Circuit Testing
- ► RF Testing and System Verification
- Production Testing
- ► Conclusions



SMART CHANNEL FACILITATES RESOURCE SHARING BETWEEN LABS

20 Rohde & Schwarz 5/2/2023 From Lab to Launch: Testing in Infrastructure / RU Development

NON-SIGNALING OBT WITH SHIELDING CHAMBER

FINAL TESTING – VERIFICATION

22

Transmitter characteristics	6.2	Base station output power	\checkmark
	6.3	Output power dynamics	×
	6.4	Transmit ON/OFF power	×
	6.5	Transmitted signal quality	\checkmark
	6.5.2	Transmitted signal quality - Frequency error	\checkmark
	6.5.3	Transmitted signal quality - Modulation quality (EVM)	\checkmark
	6.5.4	Transmitted signal quality - Time alignment error	\checkmark
	6.6	Unwanted emissions - Occupied bandwidth	\checkmark
	6.6.2	Unwanted emissions - Adjacent channel leakage power ratio (ACLR)	\checkmark
	6.6.3	Unwanted emissions - Operating band unwanted emissions (SEM)	\checkmark
	6.6.5	Unwanted emissions - Transmitter spurious emissions	×
	6.7	Transmitter intermodulation	×
eristics	7	Receiver characteristics	\checkmark
	7.2	Sensitivity reference level	\checkmark
	7.3	Dynamic range	×
Irac	7.4	In band selectivity and blocking	×
eiver	7.5	Out-of-band blocking	×
	7.6	Receiver spurious emissions	×
	7.7	Receiver intermodulation	×
	7.8	In-channel selectivity	\checkmark
_			

Rohde & Schwarz 5/2/2023 From Lab to Launch: Testing in Infrastructure / RU Development

38.141 APPLICATION NOTES

- ► Application notes for 38.141 BS conformance testing available
- Example program for Quickstep Test Execution Software enables remote operation
- ► 5G NR Basestation transmitter tests (FR1)

www.rohde-schwarz.com/appnote/GFM313

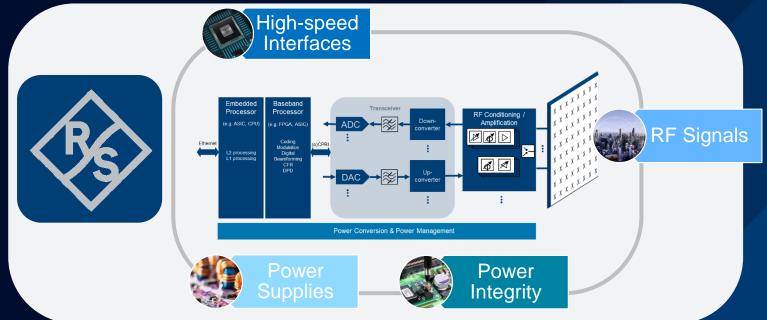
5G NR Basestation receiver tests (FR1)

www.rohde-schwarz.com/appnote/GFM314

5G NR Basestation performance tests (FR1) www.rohde-schwarz.com/appnote/GFM315

5G NR Base Station OTA Transmitter Tests www.rohde-schwarz.com/appnote/GFM324

► 5G NR Base Station OTA Receiver Tests www.rohde-schwarz.com/appnote/GFM325


- Driving Beyond Limitation for Network Infrastructure Development
- Digital Design Testing
- ► RF Testing and System Verification
- Production Testing
- ► Conclusions

CONCLUSIONS

- Technological evolution, economic efficiency, and new use cases are driving forces for network infrastructure development.
- Dense design and high data rate interferer RF circuit design have become the most challenge topic from signal/power integrity to EMC and RF performance.
- The base station has been evolved from integrated structure to single or dual split distribution network structure.
- As a reliable testing expert, R&S provide overall T&M solutions

Verify your network Mobile Infrastructure

THANKS FOR YOUR ATTENTION

22/2022 to Launch: Testing in Infrastructure / RU Development