Automotive

EVOLUTION OF IN-VEHICLE NETWORKS TO ZONAL ARCHITECTURE

Jithu Abraham Ralf Oestreicher Product Manager, Oscilloscopes

Market Segment Manager, Automotive

ROHDE&SCHWARZ

Make ideas real

AGENDA

- ► Introduction
- ► Challenge
- ► Evolution of in-vehicle network architecture
- ➤ Transition from domain to zonal architecture
- ► Automotive Ethernet
 - Overview
 - The need for testing
 - Practical demonstration
- ► Technology and testing summary

INTRODUCTION

- Automotive megatrends have strong implications for the future of automotive electronics and SW.
- ► The industry is continuously striving to realize higher levels of autonomous driving.
- ► The car of the future is autonomous, connected, electrified and shared which gives the acronym ACES.

Source: Denso Automotive Ethernet Congress 2022

Technology megatrends have strong implications for the future of automotive electronics and software.

ACES trends		Implications for automotive electronics and software	Relevance		
(R)	Autonomous driving	Complex and safety-relevant software High-performance computers	64%	of customers would switch OEMs for better autonomous- driving capabilities	
(4)	Connectivity	Performant in-vehicle network (Ethernet) Over-the-air updates Cybersecurity	95%	of new vehicles sold in 2030 will be connected	
	Electrification	New electrical package New powertrain applications	53%	of new vehicles sold in Europe in 2030 could be electric vehicles	
	Shared mobility	Features for individualization Keyless entry	2/3	of US customers expect their shared-mobility usage will increase over the next 2 years	

ncludes battery electric vehicles (EVs), plug-in hybrid EVs, and fuel-cell EVs

CHALLENGE

- ► The developing trend from a traditional vehicle design towards ACES requires the secure handling of data from an increased number of complex sensors.
- ► Moving towards the ACES trends such as fully autonomous driving or connected cars requires:
 - faster in vehicle networks (IVN) supporting high computing power and high data throughput
 - reduction of IVN complexity
 - power consumption and weight efficiency

LEVELS OF DRIVING AUTOMATION

Souce: EPRS, European Commission

EVOLUTION OF IN-VEHICLE NETWORK ARCHITECTURE

- ► IVN architecture evolved from a distributed gateway architecture with independent ECUs towards a domain centralized architecture.
- ▶ In a domain-centralized architecture, vehicle systems are grouped by function. Few domain controller units (DCUs) covering one vehicle domain each, such as connectivity, chassis, or infotainment.
- Communication is limited between domains that are controlled by a central gateway.
- ▶ Domain centralized architecture is suitable up to SAE level 3.

Rohde & Schwarz 25.10.2022 Evolution of in-vehicle networks to zonal architecture

EVOLUTION OF IN-VEHICLE NETWORK ARCHITECTURE

- ► Future cars will be based on a zonal architecture:
 - vehicle domains grouped into several zones
 - in each zone, devices are connected to a locally installed zonal gateway → short cable lengths
 - each zonal gateway is connected to the central computer via high-speed ethernet
 - domain functionality is handled in the central computer (centralized SW)
- ► Redundancy within zonal architecture support autonomous driving above level 3.

Source: NXP Automotive Ethernet Congress 2022

TRANSITION FROM DOMAIN TO ZONAL ARCHITECTURE

Domain architecture

- Central domain controller/high performance computer
- Ability to handle more complex functions
- Consolidation of functions (cost optimization)
- But: cable harness is rigid and expensive

Source: Marvell Automotive Ethernet Congress 2022

Zonal architecture

- Local ethernet gateway per zone
- Ultra high-speed secured backbone between zones
- Centralized SW
- Central computing & storage

IN-VEHICLE NETWORKING TECHNOLOGIES

Rohde & Schwarz 25.10.2022 Evolution of in-vehicle networks to zonal architecture

ZONAL ARCHITECTURE AUTOMOTIVE ETHERNET BACKBONE

TRENDS IN AUTOMOTIVE ETHERNET

REAL WORLD APPLICATION NEXT-GEN TCUs

DIFFERENCE BETWEEN 100BASE-TX AND 100BASE-T1

100BASE-Tx standard Ethernet

Fast rise time 3 clear levels

100BASE-T1 Automotive Ethernet

OBJECTIVE FOR AUTOMOTIVE ETHERNET TESTING

AUTOMOTIVE ETHERNET TODAY IEEE 802.3

IEEE 802.3 Process

Call-For-Interest
Study Group
Task Force
Approved

Home

About

Members

Tech Committees

News & Events

Contact Us

Members

Member Login

Promoters

Adopters

Membership

OPEN Alliance SIG Promoter Members

BMW of North America General Motors Co. Toyota Motor Corporation Broadcom Limited Hyundai Motor Company Renesas Electronics Europe GmbH Volvo Car Corporation

Continental Marvell Semiconductor Robert Bosch GmbH VW Group

Driven by OEMs

12 Promoters 124 Adopters

http://www.opensig.org/

Rohde & Schwarz 25.10.2022 Evolution of in-vehicle networks to zonal architecture

Home

About

Members

Tech Committees

News & Events

Contact Us

Tech Committees

Automotive Ethernet ECU Test Specification (v3.0) Currently supports 100/1000BASE-T1

AUTOMOTIVE ETHERNET TODAY

	10BASE-T1S	100BASE-T1	1000BASE-T1	2.5GBASE-T1	5GBASE-T1	10GBASE-T1	
IEEE 802.3 Reference	802.3cg-2019 Clause 147	802.3bw-2015 Clause 96	802.3bp-2016 Clause 97		802.3ch-2020 Clause 149		
OPEN Alliance PHY Compliance Tech Committee	TC14	TC1 (Closed)	TC12		TC15		
Bit Rate (Mbps)	10	100	1000	2500	5000	10000	
Baud Rate (MBd)	12.5	66.66	750	1406.25	2812.5	5625	
Encoding	2-Level DME	PA	M3		PAM4		
Cabling	UTP		UTP (STP optional)	STP			

ROHDE & SCHWARZ AUTOMOTIVE ETHERNET TEST SOLUTIONS

R&S ZNB

► Support OPEN Alliance

- TC1, TC8, TC9, TC12, TC14, TC15
- ► PMA Compliance Test Coverage:
 - 10BASE-T1S
 - 100BASE-T1
 - 1000BASE-T1
 - 2.5G/5G/10GBASE-T1
- ▶ Trigger & Decode capabilities for debug
- ► Characterization of cables and connectors
- ▶ Automatic test execution
- ► Automated controlling of Scope, VNA, and signal generator

NEW MULTIGBASE-T1 COMPLIANCE TEST SOLUTION

- ▶ New K88 AUT Ethernet compliance option for 2.5/5/10G speeds
- ▶ Based on the IEEE 802.3ch
- ▶ Uses PAM4 modulation with symbol rates of 1.4/2.8/5.6 GHz
- Runs exclusively on shielded twisted pair (STP)
- ► Additional information:
 - Available on both the RTO (up to 2.5G) and RTP
 - Coverage of all relevant test cases
 - No additional options required (e.g. jitter)
 - Complete solution with VNA & fixtures

OPEN TC15 TEST SPEC COVERAGE LAYER 1

► Group 1: PMA Transmit Tests:

- Maximum Output Droop
- Transmitter Linearity
- Transmitter Timing Jitter
- Transmit MDI Random Jitter in master mode
- Transmit MDI Deterministic Jitter in master mode
- Transmitter Power Spectral Density (PSD) and power level
- Transmitter Peak Differential Output
- Transmitter Clock Frequency
- Transmitter Distortion

► Group 2: PMA Receive Tests:

- Bit Error Rate Verification
- Alien Crosstalk Noise Rejection
- Receiver Frequency Tolerance (Optional)

► Group 3: MDI Impedance Requirements:

- MDI return Loss

Rohde & Schwarz 25.10.2022 Evolution of in-vehicle networks to zonal architecture

Specification is in draft version

DEMO

OPEN ALLIANCE AUTOMOTIVE ETHERNET – TC9 UTP/STP

- ► TC9 **UTP** (Unshielded twisted pair) 1000BASE-T1
- ► TC9 **STP** (Shielded twisted pair) 1000BASE-T1 (ver.2.3), 2.5/5/10GBASE-T1 (draft 0.3) Test of cable, connector and whole communication channel
 - 4-Port Device needed: ZNB8 for compliance, ZNB20 for cable/connector manufacturers
 - Differential return loss and insertion loss
 - Differential impedance (TDR)
 - Mode Conversion (-61 dB)
 - → High VNA calibration accuracy required

PASS RL Port1

OA COMPLIANCE TESTING PHY LAYER SUMMARY

R&S®RTP

Max freq. 16GHz

OATC8 & OATC15 Supports speeds up to 10GBASE-T1

R&S®RTO

Max freq. 6GHz

OATC8 & OATC15 Supports speeds up to 2.5GBASE-T1

R&S®7NB

4-port VNA 9kHz - 40GHz OATC9, OATC8 & OATC15 8GHz VNA sufficient for 10GBASE-T1

Automotive

TECHNOLOGY AND TESTING SUMMARY

- The car of the future is autonomous, connected, electrified and shared (ACES).
- Fast and flexible in vehicle networks (IVN) support high computing power and high data throughput.
- The in-vehicle network will evolve from a domain-centralized architecture to a zonal architecture.
- Domain centralized architecture enables driving up to SAE level 3, zonal architecture supports autonomous driving above level 3.
- Multi-Gig Ethernet backbone enables fast and flexible data transmission within a vehicle.
- Shorter vehicle wiring harness reduces cost and weight.
- Compatibility and performance of different vendors' equipment can be ensured via OPEN Alliance compliance testing.

Find out more

www.rohde-schwarz.com/automotive/ivn

Make ideas real

