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6G research areas - vision and key technologies
THz and photonics are potential technologies of 6G
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Sub-THz Communication

New spectrum for 5G and 6G: bandwidth is the key

Can sub-THz wireless networks score significant capacity gains in an energy efficient manner?
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Estimated first use cases of THz Communication
What is expected to be realized first?

Fixed point-to-point Applications with Integrated Sensing and
applications mobile users Communications
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Source: T. Kiirner, TeraHz — A candidate for 6G; Enjoy — The ETSI Magazine — January 2023, p. 14-15; [online] https://www.etsi.org/e-
brochure/Magazine/January-2023/mobile/index.html#p=14
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THz applications
A plethora of applications yet to be explored.

Communications and sensing Spectroscopy

» Ultra-high-speed communications » Material analysis » Nondestructive imaging (with R&S®QPS100
» Fusion of communications and sensing (radar) » Analysis of the terahertz spectra from diclofenac security scanner)
capabilities acid can distinguish between the two chief forms » Production line (final assembly test)
of the drug

Diclofenac acid Polymorph |
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Estimated first use cases of THz Communication
What is expected to be realized first?

Backhaul/fronthaul links Kiosk and intra-device communications Wireless link in data centers

» Ultra-high-speed communications » Ultrafast download of prefixed content » Communications inside data centers: remote
» Backhaul/fronthaul P2P connections (e.g. UHD video, music) at specific locations memory can increase design flexibility and reduce
» Infrastructure in remote locations (vending machines, train stations) cost by extending CPU memory distance

» Chip-to-chip communications

absorption windows, power and antenna arrays for directivity
Microwave links: straightforward application of B5G and 6G

E-band (60-90 GHz) extension into

= W-band (75-110 GHz)

= D-band (110-170 GHz)

= (currently 300 GHz mainly in Japan, not limited to microwave links)
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THz Communication

Ways to generate THz radiation
From Electronics to Optoelectronics

Terahertz (IEEE, ITU): 0.3 THz to 3 THz In publications: 0.1 THz to10 THz

_ _ IR — visible — UV Energy equivalents:
Microwave THz regime 1THz,
1ps,
300 pm,
4.1 meV,
49K

Upconversion: electronic sources Direct THz emission Downconversion: optoelectronics

» Quantum cascade laser (QCL),
nonlinear optics, molecular lasers
(power OK, limited efficiency,
sometimes cryogenic)

» Multiplier chains, RTD, transistors, » Photodiodes, photoconductors

diodes
» Compact, room temperature, but
bandwidth limited, limited efficiency

» Tunable, room temperature,
but power limited, limited efficiency
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THz Electronics

D band (110 GHz to 170 GHz) signal generation and analysis
R&S®FE170ST frontend transmitter and R&S®FE170SR frontend receiver
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Photonics

The role of photonics in 6G

Photonics could represent to the 21st century, what electronics has meant for the 20th century.
THz and VLC (6G-ADLANTIK)

Photonic integrated circuit (PIC) for Generation of THz radiation by optical mixing on a photodiode

miniaturization / commercialization VLC (visible light communication) also known as LiFi: modulation of

commercial LEDs, cost-efficient with easy integration into existing
infrastructure mainly for line-of-sight indoor applications

optical generation of microwave oscillators with ultra-low phase noise

All-Photonic networks (APN)
* Innovative Optical and Wireless Networks Global Forum (IOWN GF)

=  end-to-end optical path between points in the networks with minimal
photo-electric conversion to realize large-capacity, low-latency, and
low-energy consumption infrastructure

Quantum communication and quantum

networks
= trustworthiness for ultra-secure and reliable communication

= inherently secure way of quantum key distribution (QKD) by exchange
Courtesy of Lionix Structured Light of entangled photons (eavesdropping is “measurement”, changes q.state)

Rohde & Schwarz



https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/6g-adlantik
https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/6g-adlantik
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Photonic generation of THz signals and application for test and measurement.
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THz generation: Optoelectronics

Down-conversion: Optoelectronic THz Generation
Photomixer: unitraveling carrier photodiode (UTC-PD) 5 wrepnotomixera quadratic converter

» THz photomixer = (Photoconductor
Complex data

bl Photodiode) + Antenna
o » Photonics: advantage is wide tunability
ol " with suitable antenna
T 1 . Photomixer
{ Beatsignal  rc.pp
Laser 1 SAVATAS ; " (N | ) /\/\/\/\/\
UFEss - Mach-Zehnder || Caupler L7
v ] A modulator (MZM) ~ — v»(ppttcal L B A Vin,
I — fiber) o Caesium Vapour
7 Laser ']
Laser 2 \VAE N V= V1~V / | \
LI
. V.
| ’ | Reference: ,Advances in terahertz
' communications accelerated by photonics”,
Mode locked laser: _ T. Nagatsuma, G. Ducournau & C. Renaud
laser 1 and laser 2 can be derived from Nature Photonics volume 10, pages 371-
optical frequency comb 379 (201 6) ! Terahertz Modulated Fluorescence

I
” Ay 473 pm
—>
11
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11
Il
i

‘ Reference: ,Real-time near-field

LWy terahertz imaging with atomic optical
fluorescence “, C.G.Wade et al., Nature
Photonics 11, pages 40-43 (2017)
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THz Generation: Optoelectronics for THz Communication

THz waves for communications
300 GHz bi-directional link demonstration over 650 m (2022, THOR project)

Courtesy of: Prof. G. Ducournau, IEMN, CNRS-Université de Lille
PhLAM, CPER Photonics, Hauts de France Region, FRANCE

Rohde & Schwarz



Phase noise measurement basics
Photonic microwaves with Optical Frequency Combs.

What is phase noise ?

=  Phase noise describes short-term variations in
the frequency or phase of a signal
= Short-term — seconds or less
= Random / unintentional phase modulation

A real (non-ideal) oscillator signal

V(t) = A(t) - cos(wt + ¢p(t))
Radial frequency “w” is still constant
Amplitude “A(t)” is a function of time
Phase offset “@(t)” is a function of time
Creates sidebands in the frequency domain
In most cases, the effects of phase variations ¢(t) are
much larger and more important than the effects of
amplitude variations A(t)

w = 2nf

Rohde & Schwarz



Phase noise measurement basics

Impact on digital modulation in communication systems

Phase noise in communication systems ;s -1 N
= Most modern high data-rate systems (e.g. Wi- .
Fi, LTE, 5GNR, etc.) use some form of phase / ‘ b ! -70 dBc / Hz
and amplitude modulation < ‘ ; >
= ¢.g.APSK or QAM S
= Modulation often shown as constellation , M > ¢
diagram A
= Symbols are unique amplitude / phase +10 kHz
pairs Single sideband (SSB) phase noise
= Phase noise can “rotate” the constellation J ( ) P
points =  Phase noise sidebands are usually symmetrical around the carrier
= Symbols are incorrectly interpreted =  Same phase noise at positive or negative offset
= Increased bit error rate (BER) = Single sideband (SSB) phase noise
= Modulation quality (phase error, EVM) »  phase noise is normally only measured on one side the carrier,
is degraded by phase noise upper sideband (positive offsets) is used by convention

Rohde & Schwarz




Phase noise analyzer
Crosscorrelation method

Phase Noise PN analyzer Cross correlation method

= Measures PN using a digital phase demodulator Ref 1
= Cross-correlation function 10]
= Signal is routed through two “identical” @_’ LPF I
paths I LNA F\
= Each path has slightly different phase \ et N
noise e e o >
= Cross-correlation function removes @ ' XCORR |—
instrument-generated phase noise N\ > 10 >
= Increasing number of cross correlations DUT LPF
increases sensitivity
= Advantages ®_' LNA
= Faster (especially for close-in offsets) Ref 2 e
= Much greater measurement sensitivity L

Rohde & Schwarz



Photonics

Laser-based ultra-low phase noise microwaves sources
Photonic microwaves with Optical Frequency Combs.

_ -1 =
AL = frop ,\ frep = 200MHz
< —> =
N
2 100 fs F
=
=» s
= = A feeo h
: : T N TR
TR Time p)) >
/ \ Frequency
/./ B \ A¢ceo 24¢Ceo phase slip — fceo fn = fceo +n frep
iy ) adh 8 dlle
= ./ ! \\\ \- / ‘\‘ M\M\
i ;’(n n‘hv,.L A A‘ﬁ‘;h ) b Frequency comb
V“ VV VN JU v = Frequency locked repetition rate 100 fs pulse width
= The pulse train repetition rate is determined by the

cavity length (200 MHz)
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Photonics

Ultra-low phase noise photonic microwaves sources
based on an optical frequency comb derived from a femtosecond pulsed laser

Frequency comb

= The pulse train repetition rate is determined by the
cavity length (mode coupling in mode locked laser)

= Phase coherence of optical is transferred to the
microwave regime

Phase calibration by frequency comb

Fixed phase relationship between frequencies of
comb

Configure comb line spacing

High speed photo diode with calibrated phase
response

Broadband phase alignment and calibration of
electrical test and measurement equipment

@ Rohde & Schwarz

Frequency comb
(multiplier or divider)

Microwave

Optical
frequency
comb
fo=nf+f,

Scott A. Diddams, et al., Optical frequency combs: Coherently uniting the electromagnetic spectrum.
Science 369, eaay3676 (2020). DOI: 10.1126/science.aay3676



OAM Orbital Angular Momentum

Structured Photons

Structured photons

What is the meaning of structure / modes for single
photons ?

Vortex phase structure

Intensity distribution is the probability to detect a
photon at a certain location

Known since only 25 years...

Laguerre Gauss modes (I, p)

= Laguerre Gauss modes in cylindrical coordinates
wave character of photon in transverse structure as
solution of the wave equation in cavity

= Quantum number angular | and radial p

= No principal difference between optical and radio
frequency (only energy different)

< 1 1
Y

=) =] 0 1 2

Rohde & Schwarz R. Fickler, Physik Journal 22 (2023) No. 2, pp. 29-34



OAM Orbital Angular Momentum

Structured Photons

Single photons with angular momentum

= Single photons can have spatial structure including
their properties.

= Structures appear when many detection processes
of single photons in the same mode are added on a
sensitive camera.

= Superposition states are possible !

Rohde & Schwarz
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OAM multiplexing technology for communication
Phase shift matrix/unit is needed to form vortex orthogonal electromagnetic waves

vepo | HPol
Transmit M°d*2 % % Receive o ' NEC successfully demonstrates real-time digital
U e ‘ OAM (Orbital Angular Momentum) mode
@ mocet] w w , e multiplexing transmission over 100m in the
z f ek 150GHz-band for the first time

mode 0 256 QAM x 16 streams multiplexing

100 m, 14.8 Gbps in D-band transmission test

mode-2
: . NTT
https://www.nec.com/en/press/202003/global 20200310 01.html
. . o ' NTT Press Release (2018): “NTT successfully
Yan, Y., Xie, G., Lavery, M. et al. High-capacity millimetre-wave = | demonstrates 100 Gbps wireless transmission using a
communications with orbital angular momentum multiplexing. ,‘ . = , new principle (OAM multiplexing) as a world's first”

Nature Communications 5, 4876 (2014).
https://doi.org/10.1038/ncomms5876

@ Rohde & Schwarz
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THz channel measurements

From channel sounding to channel models for 6G
Propagation characteristics at mmWave and THz frequencies (foundation for new PHY layer)

Key concepts:

Reflection and

= Broadband and spatially resolved diffraction

channel models are the basis for
system design, evaluation and (<( ' ))>
optimization. : -
ree-space

= There are many open research A f ’D
questions, related to sub-THz system TransmitterTN /EcewerTX
design, like power of multi-path

Scatterlng (NLOS)
components, sparsity of the channel

choice of beamwidth.

= Deterministic channel models like ray-

o
. . . . Transmitter Receiver © : L0S : >

tracing require calibration and signal signal | |
verification. . I

Channel : Propagatio

= We need channel measurements ! impulse  dela
reponse |
(CIR) I
t=0 Time t=0 Time

Rohde & Schwarz



THz channel measurements

Sub-THz channel measurements on the R&S campus

N

o
ug
5
7 | : E Indoor airport / mall scenario A

=y [ s | | [ 1 | |
|

— i L | | |

Urban Micro Scenario
0510 50m

Antenna heights: 1.5 m at Tx and Rx

Rohde & Schwarz



THz channel measurements

Time domain channel sounding setup at 158 GHz
Propagation delay measurement between transmitter and receiver

radio channel

Tx@‘

Z) Rx

R&SCFE170ST | ‘ R&SCFE170SR
——  D-band 158 GHz RF D-band <

frontend
10 MHz / T IF
1GHz
Vector Signal
— Generator
R&S®SMW200A

| Time Reference
Synchronomat (HHI)

Rohde & Schwarz

2 GHz BW

CIR < g

. LOS

+—>

| propa{Jation
1
1delay
1
l !

t=0

frontend

LI

Signal & Spectrum
Analyzer <+
R&S°FSW

1 Trigger

Time Reference ]
Synchronomat (HHI)

10 MHz /
1 GHz



CIR comparison at
158 GHz and 300
GHz

Reference

= W. Keusgen, A. Schultze, M. Peter
and T. Eichler

= "Sub-THz Channel Measurements at
158 GHz and 300 GHz in a Street
Canyon Environment,” presented at
the 2022 Joint European Conference
on Networks and Communications &
6G Summit (EuCNC/6G Summit),
Grenoble, 2022.
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https://arxiv.org/abs/2203.04404

THz channel measurements

Large-scale outdoor street canyon scenario measurements
CIRs at 158 GHz with aligned antennas from 10 m to 170 m '

Channel impulse responses, 158 GHz
= CIRs for the line-of-sight
direction for distances up to
170m

= 2 or 3 strong and stationary
reflections from the buildings

» Fluctuations of the main
path, potentially due to
ground reflection

Channel magnitude in dB

-100 -

TRCL L TTRE WL AL SRS

=110 ~

=120 —

70

Delay in ps Distance in m
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6G D-band industrial channel measurements with HHI

6G channel models in industrial scenarios for 3GPP: production environment
measurement campaigns in Memmingen plant (January 2023)

Measurement Campaign at 3.7 GHz, 28 GHz and 160 GHz Power Delay Profile

,Measurement and Characterization of an Indoor Industrial Environment at 3.7 and 28 GHz”
(EuCAP2020)

,THz Channel Sounding: Design and Validation of a High Performance Channel Sounder at 300 GHz"
(IEEE WCNC2020)

Delayin s

Rohde & Schwarz


https://ieeexplore.ieee.org/document/9135943
https://ieeexplore.ieee.org/document/9124887

6G D-band industrial channel measurements with HHI

6G channel models in industrial scenarios for 3GPP: production environment
measurement campaigns in Memmingen plant (January 2023)

Factory floor plan: Tx and Rx position Power delay profile CIR 160 GHz (mainly LOS path)
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Demo

Phase noise measurement
of an ultra-stable
microwave system based
on optical comb frequency
difference generation




Frequency comb

frep = 200MHz
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Frequency Comb based in Difference-Frequency Generation

Supercontinuum
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Optical Frequency Division: Implementation  inereaver
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Optical Frequency Division: Implementation  inereaver

!Tl !T !T !T
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Optical Frequency Division: Implementation

®

Interleaver

Diffore

f Optical Reference
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Metrology Wﬁ
ﬁS|

The new S| metric system based on fundamental constants B
The new kilogram “defined by photonics” (2019) L [h g

Re-definition of the kilogram via
Planck’s constant
h=6.626 070 15 x 10-3*kg m?%/s

Historic mass drift of the various copies of the , urkilogram”.
.The kilogram didnt behave well "

+75

23 (+132) 32

AV Cs

v

: \6/ \@” :
0 T ——emmmmEEEE 1{_35 . />° /@$ Na
L 1 | G @

+50

-509:000'0000[00% 7 \
F ST E S F kg ‘
Year
Copy of the original kilogram (,Le grand Mass drift over time of national prototypes K21-K40, plus two of the
K", Paris 1889) at the PTB (German international prototype's sister copies: K32 and K8(41). All mass changes

National Metrology Institute): 90% are relative to the IPK.
platinum, 10% iridium.
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Metrology Wﬁ
ﬁS|

The new S| metric system based on fundamental constants B
The new kilogram “defined by photonics” (2019) L [h g
Planck’s constant

h =6.626 070 15 x 10-3 kg m?/s

AV Cs

v

()
>, c h
‘(‘@‘)\ \61_/ N
Empty microwave U N photons at
cavity frequency Ves
20

N=c%hv, =14755214 x 10%

. 3
/ O
The new kilogram's mass corresponds to the energy of 7 N

1.4755214 x 10%° photons that are oscillating at the same U ‘
frequencies as the Cs'33 atoms used in atomic clocks.

Copy of the original kilogram (,Le grand
K", Paris 1889) at the PTB (German
National Metrology Institute): 90%
platinum, 10% iridium.

Wolfgang Ketterle: ,The new kilogram”
https://www.youtube.com/watch?v=KBZD3tFny E
Physics Today 73, 5, 32 (2020)

Rohde & Schwarz



Metrology A?ﬁ

The new S| metric system based on fundamental constants a
The new kilogram “defined by photonics” (2019) Qp

Planck’s constant
h =6.626 070 15 x 10-3*kg m?%/s

AV Cs

monocrystalline

N=c%hv, =14755214 x 10%

. Slicon (Si) sphere Empty microwave i N photons at
= cavity frequency Ves ° @
o T — — e TN

The new kilogram's mass corresponds to the energy of 7 N
1.4755214 x 10%° photons that are oscillating at the same kg ‘
frequencies as the Cs'33 atoms used in atomic clocks.

oot S O SORP C sphere The better the measurement techniques become, the more
of about 1 Kg, approx. 2x10% Sj atoms . oL , .
- \ precise the realization of the macroscopic kg will be.

Rohde & Schwarz
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