RF Fundamentals Seminar Part 2: RF Transmission Characteristics

ROHDE&SCHWARZ

Make ideas real

RF Transmission Characteristics

► Topics

- Transmission Lines
- Wavelength
- Impedance

What is RF?

- ► RF: Radio Frequency
- ► Frequencies from ~3 kHz to ~300 GHz (according to Wikipedia)
- ► Some commonly used terms:
 - RF: <6 GHz
 - Microwave: 6 GHz 30 GHz
 - mmWave: > 30 GHz

B

ROHDE&SCHWARZ

► Transmission

► RF (Radio Frequency)

► Circuit \rightarrow Transmission Line

Transmission Lines?

Transmission line is a physical path that is designed to handle RF signals.

- ► Would a clip lead work for connecting RF signals?
 - Maybe, if the wavelength of RF signal is long in comparison to the length of the wires, then it could work.
 Wavelength > wire length = OK
 - If the wavelength is short in comparison to line length, then we can't use clip lead but must use a 'transmission lines.'
 Wavelength < wire length = Transmission Line

Transmission Lines

Why Different type?

Cost -Material -Construction -Assembly

Power Handling -Voltage or Current -Power Loss

Frequency -Frequency Range -Bandwidth -Isolation

ROHDE&SCHWARZ

Transmission Line – Basics

Frequency and Wavelength

Application Electrical outlet A Human Voice AM Radio VHF Television FM Radio Cell Phone Wi-Fi 2.4 Satellite TV

f = c /

ation	Frequency (Hz)	Wavelength (meters)	1/4 Wavelength (meters)
outlet AC	60	5,000,000 (<i>3107 miles</i>)	1,250,000 (776.75 miles)
Voice	2,000	152,500	38,125
adio	530,000	566	141.5 Car Antenna
evision	54,000,000	5	1.25
adio	88,000,000	3 Wi-Fi Router	0.75 Older Cell Phone Antenna
hone	824,000,000	0.3 (30 cm)	0.075 (7.5 cm)
i 2.4	2,400,000,000	0.13 (13 cm)	0.0325 (3.25 cm)
te TV	11,750,000,000	0.02 (2 cm)	0.005 (5 mm)
	300 kHz	1000 m	250 m Wi-Fi USB Adapters
$\lambda \rightarrow \lambda = 0$	C / f 3 MHz	100 m	25 m
	30 MHz	10 m	2.5 m
300 MHz 1 GHz 3 GHz 30 GHz		1 m	25 cm
		30 cm	7.5 cm
		10 cm	2.5 cm
		1 cm	10 mm

(}\$

ROHDE&SCHWARZ

Transmission Line – Wavelength

Transmission Line – Wavelength vs Line Length

Low Frequency

Wavelength >> wire length

- Measured voltage not dependent on position along the wire.
- Voltage travels down wires easily for efficient power transmission.

High Frequency

Wavelength ≤ length of transmission line - Measured voltage dependent on position along line - The Transmission lines Impedance (Zo) is important match to get a low reflection and maximum power transfer.

What Defines Transmission Lines?

 Main feature of a transmission line is *characteristic* impedance, Z₀

$$Z_0 = R + jX$$

The characteristic impedance is that it is uniform along the length of the line.

 Capacitance and inductance determine the transmission line's *characteristic* impedance, Z₀

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

$$Z_0 = \sqrt{\frac{L}{C}}$$

Impedance

Z = R + jX

- Z = Impedance (ratio of Voltage/Current)
- R = Resistance (real)
- X = Reactance (imaginary)
 - Mathemeticians use *i* for $\sqrt{-1}$
 - Engineers use *j* because *i* is for current!

Reminder $\omega = 2 \pi f$

Resistance vs Reactance

The current through a resistor is proportional to the voltage across it, and the voltage across it is proportional to the current through it

Capacitors resist any instantaneous changes in voltage.

Inductors resist any instantaneous changes in current.

Reactance and Sinusoidal Signals

Resistance and Reactance vs Frequency

Resistance

The voltage/current ratio is independent of frequency

Capacitance

The *higher the frequency*, the lower the voltage, thus higher current. In general this means *lower impedance*.

Inductance

The *higher the frequency*, the lower the current. In general this means *higher impedance*.

Transmission line model (telegraph equation)

ROHDE&SCHWARZ

Transmission line impedance: Coax Z₀

- Z₀ determines relationship between voltage and current waves
- ► Z_0 is a function of physical dimensions and dielectric constant, ϵ_r
- ► Z₀ is typically 50 ohms (75 ohms in CATV systems)

$$Z_0 = \sqrt{\frac{L}{C}} = \frac{1}{2\pi} \sqrt{\frac{\mu}{\epsilon}} ln \frac{D}{d}$$

Propagation through coaxial mediums

Example 3.5 mm connector

Outer diameter of conductor:

 $D = 3.50 \, mm$ Inner diameter of conductor:

 $Z_0 = \frac{138.2}{\sqrt{1}} \log\left(\frac{3.50}{1.52}\right) = 50 \ \Omega$ $d = 1.52 \, mm$ Dielectric constant of insulator:

$$\varepsilon_r = 1$$

Transmission line characteristic Impedance

ZL	D/d	Special Characteristics	Application
77 Ω	3.6	min. attenuation	TV-receiving-antenna-line
60 Ω	2.72	max. voltage capability	No special use
30 Ω	1.65	Best power loading capacity	For very high transmitter-power
150 Ω	13	min. capacity per unit length	Low capacity test-lines (sensing head)
50 Ω	2.3	Compromise between α_{min} and P_{max}	Universally normed, RF measurement technique
93 Ω	4.8	Compromise between α_{min} and C_{min}	Lines used in data-communications

(}

Transmission Line - Effect of dielectric material

Speed of Light (in vacuum) $C_0=3*10^8$ m/s (300 000 Km/s)

Example

In a vacuum the wave travels at the speed of light: $C = C_O$ mechanical length = electrical length

travelling through a dielectric medium $\varepsilon_r = 2.25$:

$$C = \frac{C_0}{\sqrt{\varepsilon_r}} \qquad \sqrt{2.25} = 1.5 = \frac{2}{3}$$

 $C = \frac{2}{2}C_O$ mechanical length $= \frac{2}{2}$ electrical lengt

Mechanical length of line = 2λ

Voltage Standing Wave Ratio (SWR)

For any mismatch a standing wave is created by the reflecting wave

(BÈ

ROHDE&SCHWARZ

Line terminations and the reflection coefficient

Reflections and transmissions – MATCH

Perfect travelling wave No space dependence Perfect power transmission from source to load

Reflections and transmissions – OPEN

Reactive behavior (V,I=-90°)

Standing wave

Voltage/current is space dependent

Voltage oscillates along the length of the line

Reflections and transmissions – SHORT

Reactive behavior (V,I=+90°)

Standing wave

Voltage/current is space dependent Voltage oscillates along the length of the line

Transmission Line – Loss

All Transmission Lines have some power loss. *Unless they are super cool

Recap – RF Transmission Characteristic

- ► Transmission line is a physical path that is designed to handle RF signals
- Transmission lines are a necessary medium to carry signals efficiently at higher frequencies
- Use transmission line theory when line length is more than ~10% of wavelength
- ► Transmission lines are defined by **characteristic impedance**
- Transmission lines must be terminated with a matching characteristic impedance at the load for efficiently power transfer.
- ► Impedance Mismatch will create a Standing wave.

Thank you for Attending

RF Fundamentals:

SIX-PART WEBINAR SERIES

Part 2: RF Transmission Characteristics