R&S RTP Oscilloscope

(LP)DDR5 MEMORY INTERFACE SIGNAL INTEGRITY DEBUGGING & COMPLIANCE TESTING

Guido Schulze, Product Manager Oscilloscopes

Johannes Ganzert, Senior Application Engineer Oscilloscopes

ROHDE&SCHWARZ

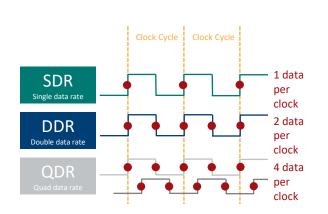
Make ideas real

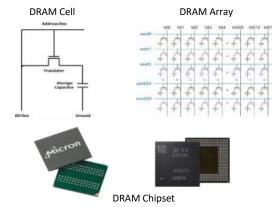
OUTLINE

- **DDR Memory Refresher**
- ► (LP)DDR5 Details
- ► Signal Integrity Debugging
- ► Compliance Testing with R&S ScopeSuite
- ▶ Live Demonstration
- ► Summary

DDR SDRAM

What is DDR?


- ▶ Double-Data Rate
- ▶ Data bit is transmitted at both rising and falling edges of clock


What is SDRAM?

- ► Synchronous Dynamic Random Access Memory
- ➤ Volatile memory that can store data fast but temporarily

What is DIMM?

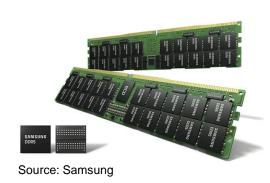
- ► Dual Inline Memory Module
- ► Commonly found in PC & servers as array of SDRAMs

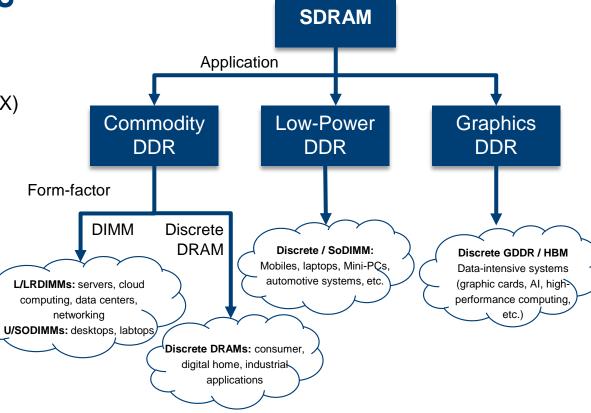
Unbuffered DIMM

Low Profile Unbuffered DIMM

Small Outline
DIMM

Micro-DIMM

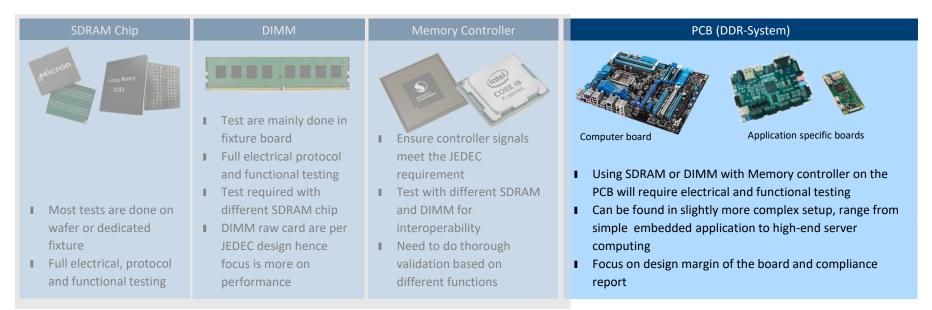

SDRAM APPLICATIONS


► SDRAM Types:

Main memory: DDRx(L)

Low Power / Mobile: LPDDRx(X)

Graphics: GDDRx(X)


DDR SDRAM: THE KEY SPECS

			Clock Frequency	Transfer 2 bits per clock	Data band	width = 64-bit * transfer rate
	Release year	Chip		Bus		
Standard		Prefetch	Clock rate (MHz)	Transfer rate (MT/s)	Bandwidth (GB/s)	Voltage (V)
SDR	1993	1 n	66 133	66 133	0.53 1.06	3.3
DDR	1998	2n	100 200	200 400	1.6 3.2	2.5
DDR2	2003	4n	200 533	400 1066	3.2 8.5	1.8
DDR3	2007	8n	400 1066	800 2133	6.4 17.066	1.5/1.35
DDR4	2014	8n	800 1600	1600 3200	12.8 25.6	1.2/1.05
DDR5	2020	16n	1600 4400	3200 8800	25.6 70.4	1.1
DDR6	2025			12800 (17600)	102.4 (136)	

TYPICAL DDR TEST SCENARIOS

I Focus on System Test:

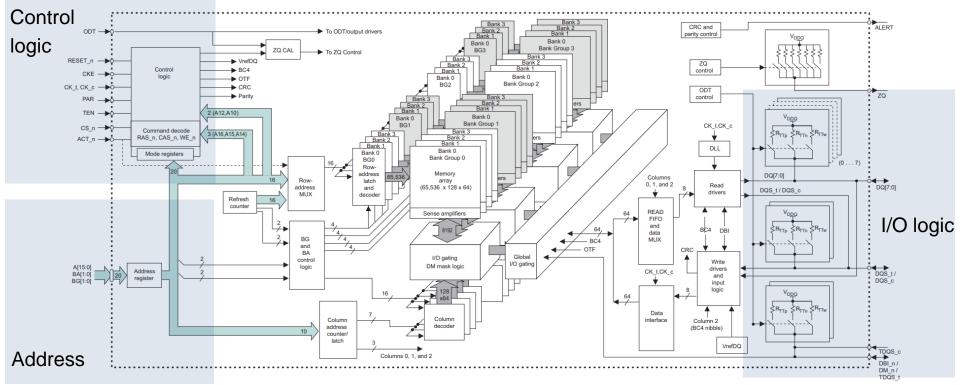
- Measure signal integrity to verify quality of board design margin
- Prove signal integrity for customers
- Debug signal integrity issues on the memory interface

DDR SYSTEM – SIGNAL INTEGRITY LIMITS

▶ Memory bus

- Source-synchronous bus with single-ended DQ and CA (X-talk, etc.)
- Multidrop bus with connects several DIMMs in parallel (trade density vs. speed)
- High load on CA bus (connects all DRAMs on a DIMM)

► PCB board design


- Transmission lines
- Power supply
- Reference clock
- Isolation from other IPs

The transmission rate doubles from generation to generation.

The voltage level and margins reduce from generation to generation.

(LP)DDR5 DETAILS

DDR SIGNALS FUNCTIONAL BLOCK DIAGRAM

Source: JESD79-5C

COMMAND TRUTH TABLE DDR5

- ► All SDRAM commands are defined by states of command bus
- ► Example DDR5:
 - Signals are either command or address depending on ACT_n
 - Actived at the rising edge of the clock
 - For Debugging Read / Write Separation
 CS and CA4 are very useful

Table 30 — Command Truth Table

Function	Abbrevia- tion	CS n	CA Pins											NOTES										
		L	CA0	CA1	CA2	CA3	CA4	CA5	CA6	CA7	CA8	CA9	CA10	CA11	CA12	CA13								
Activate	ACT	ΔCT	ΔCT	ACT	ACT	ACT	ACT	L	L	L	R0	R1	R2	R3	BA0	BA1	BG0	BG1	BG2	CIDO	CID1	CID2	11, 17, 20	
, tour ato		Н	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	CID3/ R17	,, ==							
RFU	RFU	L	Н	L	L	L	L	V	V	V	V	٧	V	V	V	V								
1410		Н	V	V	V	V	V	V	V	V	V	V	V	V	V	V								
RFU	RFU	L	Н	L	ш	L	Н	V	٧	V	V	٧	٧	V	V	V								
1410	1410	Η	V	V	٧	٧	٧	V	V	٧	V	٧	V	V	V	V								
Write Pattern	WRP	L	Н	L	L	Н	L	Н	BA0	BA1	BG0	BG1	BG2	CIDO	CID1	CID2	11, 15, 18,19, 20							
···········	••••	Н	V	C3	C4	C5	C6	C7	C8	C9	C10	V	Н	н	V	CID3	18,19, 20							
Write Pattern w/	WRPA	L	Н	L	L	н	L	Н	BA0	BA1	BG0	BG1	BG2	CIDO	CID1	CID2	11 15							
Auto Precharge		Н	V	C3	C4	C5	C6	C7	C8	C9	C10	V or DRFM=L	AP=L	н	v	CID3	11, 15, 18,19, 20							
RFU	RFU	L	Н	L	L	Н	Н	V	V	V	٧	٧	٧	٧	V	٧								
KFU		Н	V	V	٧	V	٧	V	V	V	V	V	٧	V	V	V								
Mode Register Write	MRW	L	Н	L	Н	L	L	MRA0	MRA1	MRA2	MRA3	MRA4	MRA5	MRA6	MRA7	V	8, 11, 13, 20							
wode register write		Ι	OP0	OP1	OP2	OP3	OP4	OP5	OP6	OP7	V	٧	CW	V	V	V	20							
Mode Register Read	MRR	L	Н	L	Н	L	Н	MRA0	MRA1	MRA2	MRA3	MRA4	MRA5	MRA6	MRA7	V	8, 13, 21,							
meae riegieter rieau		Н	L	L	٧	V	٧	V	V	V	V	V	CW	V	V	٧	20							
Write	WR	WR	-	Н	L	Н	Н	4	BL"=L	BA0	BA1	BG0	BG1	BG2	CID0	CID1	CID2	8, 12, 15,						
· · · · · · · · · · · · · · · · · · ·		H	<u> </u>	C3	C4	C5	C ₆	C7	C8	C9	C10	٧	Н	WR_ PartiaT=L	V	CID3	19, 20							
Write w/Auto	WRA			WD.	14/04	14/5.4		14/04	-	Н	L	Н	Н	L.	BL*=L	BA0	BA1	BG0	BG1	BG2	CID0	CID1	CID2	8, 12, 15
Precharge		Н	V	C3	C4	C5	C ₆	C7	C8	C9	C10	V or DRFM=L	AP=L	WR_ Partial=L	V	CID3	19, 20							
	RD		Н	L	Н	н		BL =L	BAO	BA1	BG0	BG1	BG2	CIDO	CID1	CID2	8, 15, 19							
Read		Н	C2	C3	C4	C5	C ₆	- 07	C8	C9	C10	٧	н	٧	V	CID3	20							
Read w/Auto	RDA	7	Н	L	Н	Н	Н	BL*=L	BA0	BA1	BG0	BG1	BG2	CIDO	CID1	CID2	8, 15, 19							
Precharge		H	C2	С3	C4	C5	C ₆	C7	C8	С9	C10	V or DRFM=L	AP=L	V	V	CID3	20							
VrefCA Command	VrefCA	L	н	н	L	L	L	OP0	OP1	OP2	OP3	OP4	OP5	OP6	L	V								
VrefCS Command	VrefCS	L	н	н	L	L	L	OP0	OP1	OP2	OP3	OP4	OP5	OP6	н	٧								
Refresh All	REFab	L	н	н	L	L	н	CID3	V	v	V or RIR	V or H	L	CIDO	CID1	CID2	3, 23, 24							

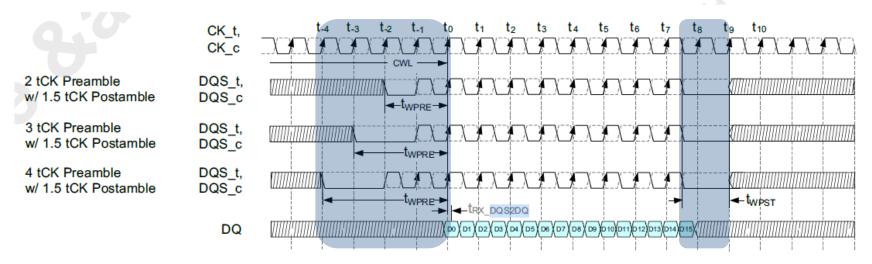
PRE-/ POSTAMBLE TIMING VARIABLES - WRITE

➤ Write:

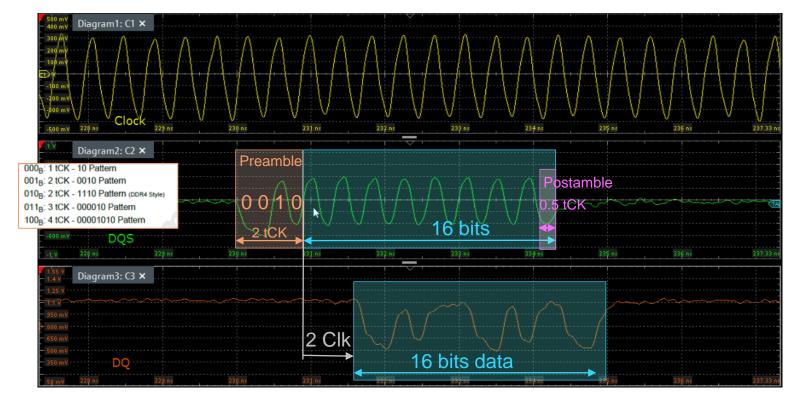
Preamble: 2/ 3/ 4 tCK

Postamble: 0.5 or 1.5 tCK

DQS clock tree delay: tRX_DQS2DQ


Table 146 — tRX DQS2DQ Offset Due to Temperature and Voltage Variation for DDR5-3200 to 4800

Parameter	Symbol	DDR5-3200		DDR5-3600		DDR5-4000		DDR5-4400		DDR5-4800		Unit	Notes
Farameter		Min	Max	Unit	Notes								
DQS to DQ offset temperature variation	tRX_DQS2DQ _temp	-	12.75	-	11.34	-	10.20	-	9.28	-	8.50	ps/10°C	1,3
DQS to DQ offset voltage variation	tRX_DQS2DQ _volt	-	45.00	-	43.00	-	41.00	-	39.00	-	32.00	ps/ 50mV	2,3


NOTE 1 tRX_DQS2DQ max delay variation as a function of temperature

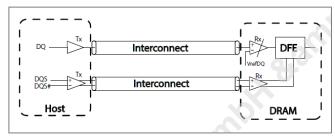
NOTE 2 tRX_DQS2DQ max delay variation as a function of the DC voltage variation for VDDQ and VDD. It includes the VDDQ and VDD AC noise impact for frequencies >20MHz and max voltage of 45mVpA-pk from DC -20MHz at a fixed temperature on the package. For tester measurement VDDQ=VDD is assumed.

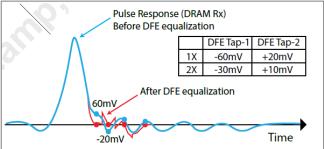
NOTE 3 Absolute value of DQS to DQ offset

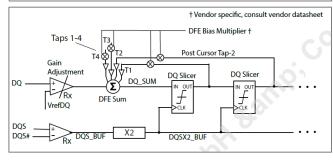

DDR5-4800 SINGLE RANK UDIMM (CRUCIAL) WRITE

Rohde & Schwarz

LPDDR5 SIGNALS


- ► New: Two forwarding Strobe Clock signals:
 - WCK: timing reference for WRITE data capture and READ data output
 - RDQS: is derived from WCK and timing reference for READ



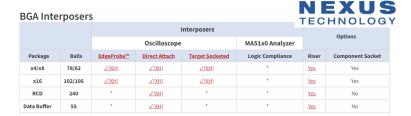

(LP)DDR5 Details

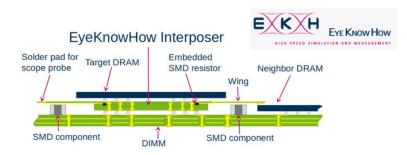
DFE

- ► ISI due to reflections is particular concern for DDR5
- ▶ 4-tap DFE for data rates >= 2933 MT/s
 - Gain amplifier
 - DFE summer
 - 4 DQ slicers (tabs) looping back to summer
- ► Mode Register to define DFE settings for memory controller
- Optimal settings are system dependent

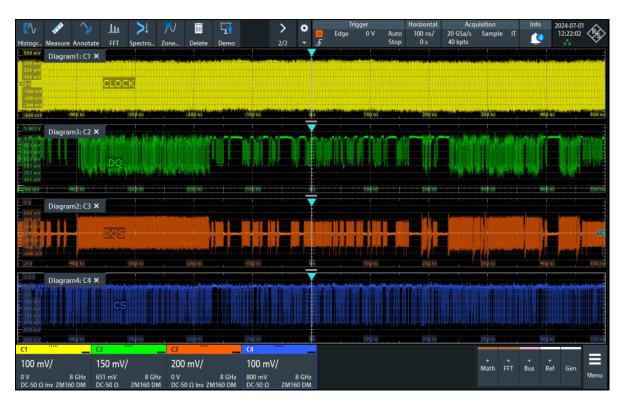
CONTACTING THE DDR INTERFACE VIAS, INTERPOSERS

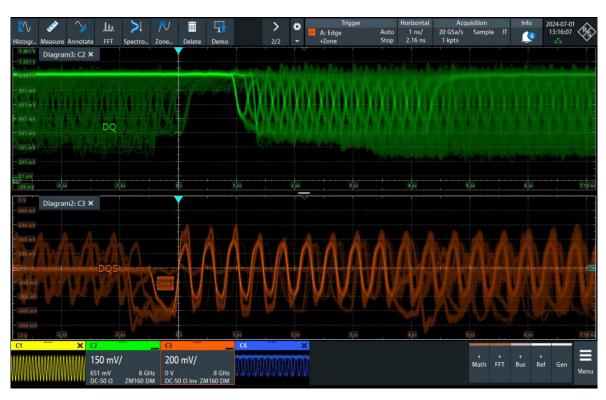
- DDR JEDEC compliance focus on SDRAM chip and specifies measurement at package ball
- On single-sided DIMM or PCB, it is still possible to probe behind the package
- For design without access to back of PCB, interposer is required
- For interposers we refer to Nexus or EyeKnowHow





Rohde & Schwarz

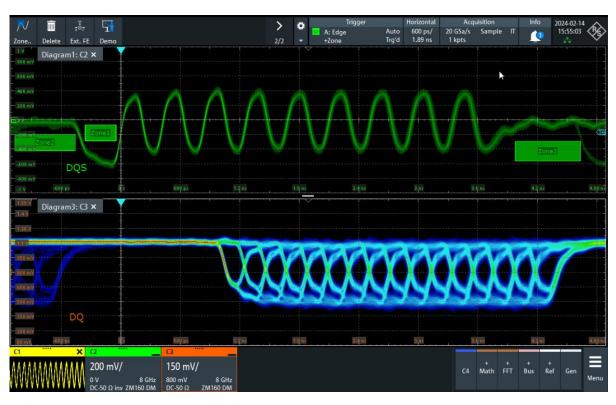

Interposer solution from EKH


(LP)DDR5 SIGNAL INTEGRITY DEBUGGING THE POWER OF THE ZONE TRIGGER

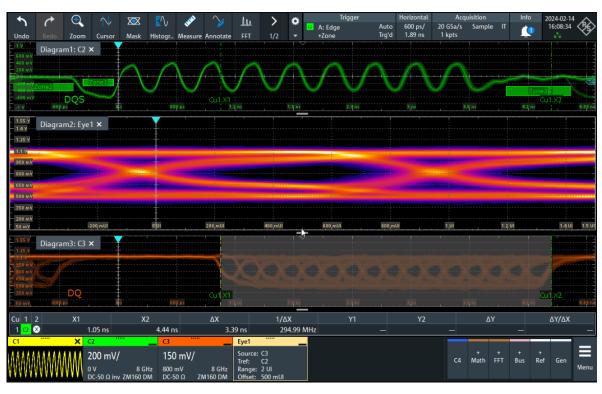
THE POWER OF ZONE TRIGGER SIGNAL OVERVIEW

- ► Single Acquisition over a longer time scale (e.g. 1us)
- ▶ In the example an amplitude difference for different bursts at DQ and DQS is visble

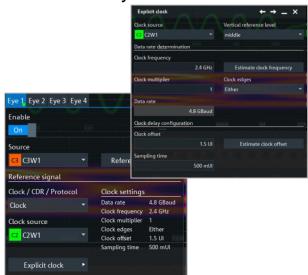
THE POWER OF ZONE TRIGGER PRE-/ POSTAMBLE


- ► The pre- and postamble depends on the data rate and system configuration.
- With the Zone trigger you easily can focus the acquisition on Read or Write bursts
- ► Focus on short bursts

THE POWER OF ZONE TRIGGER PRE-/ POSTAMBLE: WRITE


- **▶** Preamble:
 - Pattern 0010 2 tCK
- **▶** Postamble:
 - Pattern 0 0.5tCK

THE POWER OF ZONE TRIGGER ISOLATING WRITES FOR DATA EYES



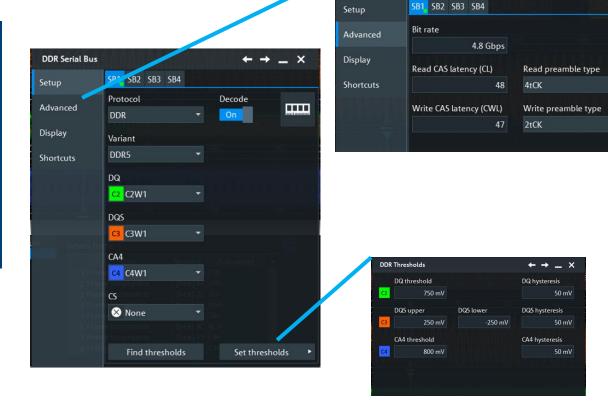
▶ Use Zone Trigger for Read/ Write burst separation and respective eye analysis

THE POWER OF ZONE TRIGGER **EYE DIAGRAM - WRITE BURSTS**

- ▶ Gate focusing on the WRITE bursts
- ► Explicit clock with respective clock delay

Rohde & Schwarz

THE POWER OF ZONE TRIGGER VERIFY CL/CWL LATENCY



- ▶ Use Zone Trigger for R/W burst separation and respective eye analysis
- ► Apply "Persistence Mode"
- Measure Latency on CS and CA04

(LP)DDR5 SIGNAL INTEGRITY DEBUGGING DDR PROTOCOL DECODE (READ/ WRITE)


PROTOCOL DECODE: READ/WRITE

- ▶ DDR5 Decode:
 - based on CL/CWL and Preamble
 - DQ, DQS, CA04
- ► LPDDR5 Decode:
 - Based on RDQS toggling
 - DQ, WCK, RDQS

DDR Serial Bus

PROTOCOL DECODE: READ/WRITE DDR5-4800

► Read/ Write Decoding Example at 4800 Mbit/s

Rohde & Schwarz

PROTOCOL DECODE: READ/WRITE DDR5-4800

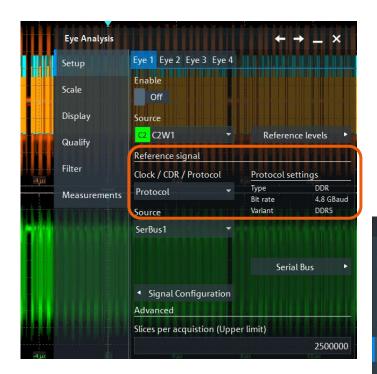
▶ Decode table

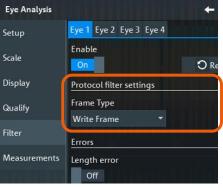
PROTOCOL DECODE: READ/WRITE DDR5-4800

Scaling in to Result details

PROTOCOL DECODE: READ/WRITE LPDDR5-4267

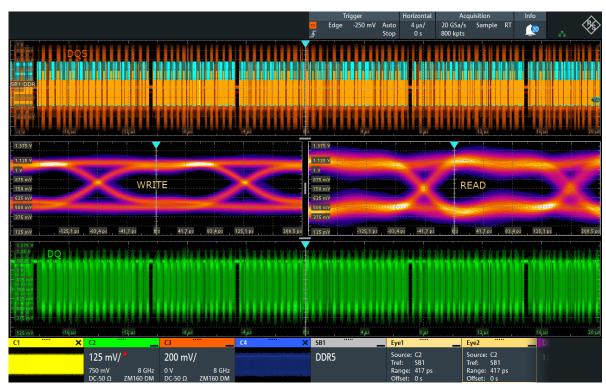
Scaling in to Result details

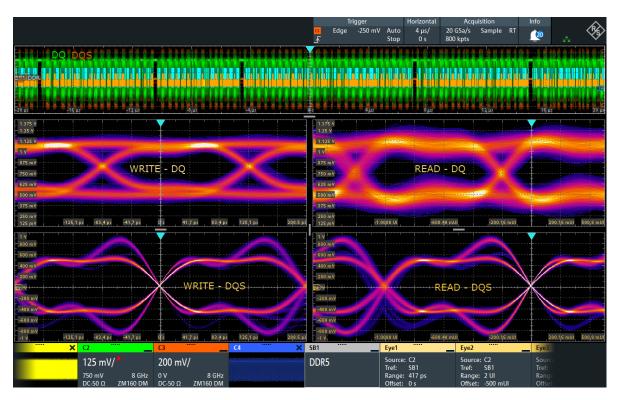

Rohde & Schwarz


(LP)DR5 SIGNAL INTEGRITY DEBUGGING DDR EYE

DATA EYE ANALYSIS BASED ON DDR PROTOCOL DECODE

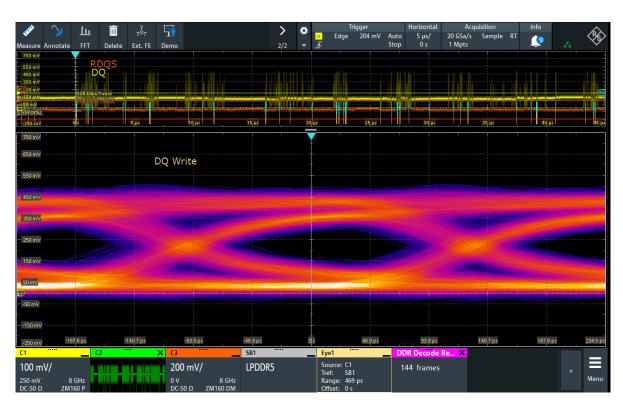
► DDR Data Eye:


- DDR protocol as timing reference
- Use the power of the Advanced Eye function
- Filter to distinguish Read and Write Eyes


Rohde & Schwarz

DATA EYE ANALYSIS BASED ON DDR PROTOCOL DECODE: DDR5-4800

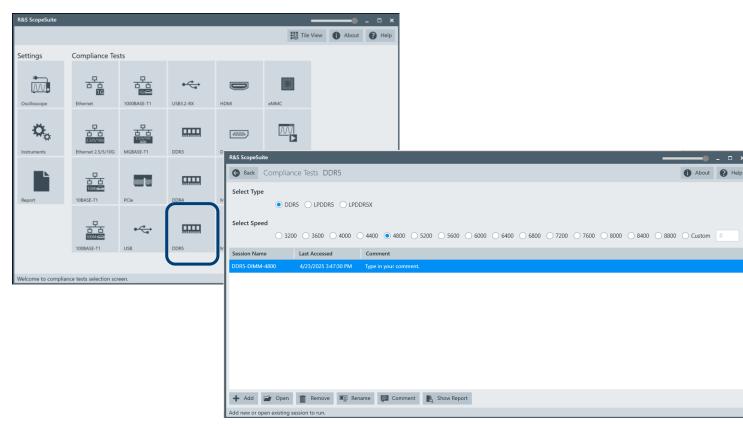
► READ & WRITE DQ data eyes


DATA EYE ANALYSIS BASED ON DDR PROTOCOL DECODE: DDR5-4800

READ & WRITE DQ data and DQS strobe clock eyes

Rohde & Schwarz

DATA EYE ANALYSIS BASED ON DDR PROTOCOL DECODE: LPDDR5-4267

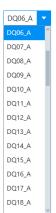


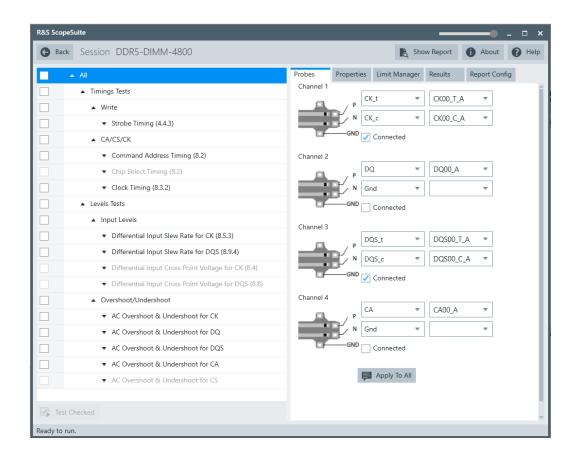
► WRITE DQ data

COMPLIANCE TESTING

DDR5 - SCOPESUITE

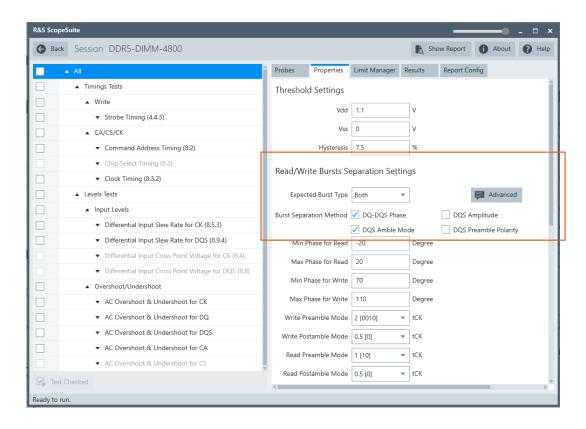
- ▶ DDR5 Tile
- **▶** Select Type
 - DDR5
 - LPDDR5
 - LPDDR5X
- ► Select Speed:
 - JEDEC speed grade or
 - Custom



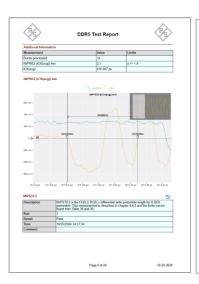

DDR5 – SCOPESUITE PROBE SETUP

- ► New flexibility for Signal-to-Probe configuration:
 - use single-ended mode to connect to two DQ or CA signals

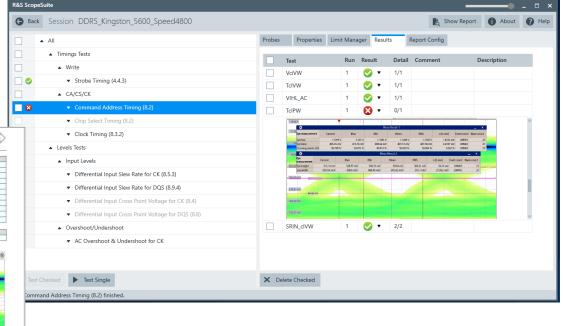
use diff mode for connecting to se signals


- ► Probe labels for
 - CLK, DQ, DQS, CS and CA signals

DDR5 – SCOPESUITE PROPERTIES


- ► Flexible Read / Write separation
 - DQ-DQS Phase
 - DQS Amplitude
 - DQS Preamble Pattern
 - DQS Preamble Polarity

DDR5 – SCOPESUITE RESULTS DDR5-4800


► Results per test item within the ScopeSuite application

▶ Detailed Report

VolVW: CA

DDR5 Memory Interface - Signal Integrity Debugging & Compliance Testing **DEMO**

SUMMARY

SUMMARY

- ► The need for memory continuously increases
- Data rates are increasing, voltage levels decreasing
- ► RTP's 16 GHz covers DDR5
- ► The RTP can address SI debugging with Zone Trigger and Advanced Eye
- R&S addresses compliance testing with dedicated options for DDR5 and LPDDR5

Find out more

www.rohde-schwarz.com/rtp

ROHDE&SCHWARZ

Make ideas real

