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Key Technologies for High-Power-Density Modules

« Semiconductor (GaN, SiC etc.)
« Conduction loss Peona = I?Reg
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How to Reduce Conduction Loss

1. Select Devices with Low On-Resistance
* Uselow Rpg,, SWitches:
Conduction loss is proportional to the square of the current. Therefore, choosing switching devices with
lower on-resistance can significantly reduce conduction loss.
* Adoptwide bandgap devices (e.g., SiC / GaN):
These components maintain extremely low on-resistance even under high voltage and high-frequency
conditions, making them ideal for high power density applications.
2. Parallel Switching Devices
 Connecting multiple switches in parallel can share current and reduce the equivalent on-resistance.
* However, ensure even current distribution; otherwise, thermal imbalance or overload may occur.
3. Switch Selection and Thermal Management
* Evaluate Ryg,, variation with temperature:
The on-resistance of MOSFETs increases with temperature. A good thermal design helps mitigate this
increase and keeps conduction losses low.
* Check the datasheet Rpg,,, at 125°C, not just at room temperature, to ensure reliable performance under
actual conditions.
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How to Reduce Conduction Loss (Continued)
4. Consider Circuit Topology Effects on LLC resonant converter PSFB converter
Switch RMS Current T -

>
Qs Q7 Resr2
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» Different converter topologies result in
different switch current waveforms and
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RMS values. Even with the same oL %ﬁgﬁ%gx e
average current, conduction losses NP LI
may vary significantly. v [ @ Q L
 Example: vo [1[ @ - “'
* In an LLC resonant converter, the vl a | o ﬁ
switch current is close to a v ] 0 x - r
sinusoidal waveform, resulting in me T\ >
lower RMS current and thus lower Vae i \ L Vee Vi m 7 >

conduction loss.

* In a Phase-Shifted Full-Bridge s }7/157/_1 |1,|z_|//\_| /\/\_l:
(PSFB) converter, the switch v ! V
current is typically a rectangular

waveform, leading to a higher RMS i }7/_157/_1 Y I / \ .
7k

current and consequently greater

L/
conduction loss.
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How to Reduce Conduction Loss (Continued)
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Conduction Loss Source Cause / Description Reduction Methods & Design Strategies
. Power loss due to on-resistance during conduction: - Use low RDS(on) devices- Use wide bandgap devices
MOSFET/Switch RDS(on) Loss P = Lns® X Rason (SiC, GaN)- Parallel switches to share current
. Fixed voltage drop times current during conduction: - Replace diodes with synchronous rectifiers (MOSFETSs)-
Diode Forward Voltage Drop P = Vg Xlgyg Use Schottky or low Vf diodes

- Use thicker wires or multiple parallel strands- Reduce
mean length per turn (MLT)- Use Litz wire at high
frequency

Winding resistance causes I°R loss during current

Transformer / Inductor Winding DCR .
conduction

o 2 o q o q
PCB Trace Resistance Copper trace resistance causes I°R loss, especially under - Widen traces or use heavier copper- Use multiple layers

high current for current sharing- Shorten trace length
High RMS Current Even with same average current, higher waveform RMS - Use topglogles with smoother currgn.t V\{aveforms (e.g.,
causes more loss LLC)- Optimize control strategy to minimize RMS
. . Conductor resistance increases with temperature: - Improve cooling design- Place components away from
LCLWEL T O LR LA U TUEOIATED R(T) =R,(1 + a(T —Ty)) heat sources- Use materials with better temp. stability
. In parallel FETs or phases, currentimbalance causes - Use current balancing resistors- Match gate resistors
Unbalanced Current Sharing . . . .
local overheating and increased loss and layout symmetry- Apply active current sharing control

- Optimize PCB layout- Use compact magnetic designs-

Long Conduction Path / High Loop Impedance Extended current paths add resistance and inductance B R [t e e

Conclusion:

The key to reducing conduction loss in switching devices lies in optimal component selection, parallel design,
control strategy, and thermal management. In high-current applications, conduction loss often becomes a
major efficiency bottleneck—careful design and simulation are essential early in the process.
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How to Reduce Switching Loss

1. Choose High-Performance Switching Devices
 Adopt Wide Bandgap Semiconductors (e.g., SiC/GaN MOSFETSs):

* Faster switching speeds

* Lower on-resistance and switching capacitance
* Optimize Gate Driver Circuits:

* Use dedicated driverIcs

* Precisely control gate voltage to shorten charge/discharge time and reduce switching loss
2. Implement Soft Switching Techniques
e Zero Voltage Switching (ZVS) / Zero Current Switching (ZCS):

* Ensure voltage or current is near zero during switching transitions to minimize energy loss
 Use Resonant Converters (e.g., LLC Resonant Converters):

* Allow switches to operate under resonant conditions

* Reduce voltage-current overlap during switching and minimize losses

DS 1
IDS IDS
PQA,switch_on = E Vp - Ipeak . Tf_max - fs
A\ / i
— s >t g y I y y
zcs 2vs

PQASWltch of f — 2 VD veak Tr_max fs

Hard Switching Soft Switching  Tutorial at ICPE 2019 — ECCE Asia in Busan, Korea.
High Frequency Power Converter Design: Magnetics, Gate Driver, C%r |
LY FXYTIRY . | ower Converter| ate Driver, CRgni 8 SHwa
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4. Improve Circuit Design and Layout
* Minimize Parasitic Effects:
 Shorten PCB traces to reduce parasitic inductance and capacitance
* Use low-impedance PCB layout and shielding techniques to suppress ringing and EMI
5. Thermal Management
* Ensure adequate cooling (e.g., heat sinks or fans) to prevent overheating, which can increase losses and
reduce component lifespan
Conclusion:
Reducing switching losses requires a multi-faceted approach, including component selection, circuit and layout
optimization, control strategy refinement, and system-level integration. Each solution should be tailored to the
specific application scenario to maximize efficiency and reliability.

Tutorial at ICPE 2019 — ECCE Asia in Busan, Korea.

é’I/AEEcEa: ﬂ.& * ’t ﬂ.a* g . High Frequency Power anverFer Design: Magnetics, Gfate Dri\{er, Control R %&S(}__HWAR_Z
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How to Reduce Switching Loss (Continued)

Switching Loss Source

Turn-on / Turn-off Loss

Output Capacitance Loss (Coss)

Gate Charging Loss

Body Diode Reverse Recovery Loss

Parasitic Ringing Loss

High Switching Frequency Loss

Hard Switching Loss in High Voltage/Current

Driver Undershoot / Overshoot

ove @l 2 4k BERY

Cause / Description
Voltage and current overlap during switching transition:
1
P=§V-I-tsw-f

Energy to charge/discharge output capacitance every
cycle:

1 2
EZE'COSS'V

Loss due to charging/discharging gate capacitance:
P = Qg . Vg 5 f

Reverse recovery current during body diode conduction
and turn-off

Resonance between device parasitics causes high-
frequency ringing and loss

Switching loss scales with frequency; higher frequency
increases energy per second

Large overlap of Vds and Id during transitions causes
substantial power loss

Improper gate driver behavior causes incomplete
switching or oscillation

Since1912 National Taipei University of Technology ©ECIE Lab A” I’Ig htS reserved

Reduction Methods & Design Strategies

- Use fast switching devices (e.g., SiC/GaN)- Optimize
gate driver strength- Reduce parasitic inductance

- Choose devices with low Coss- Use ZVS techniques-
Optimize dead time

- Use gate driver with adaptive turn-on profile- Reduce
gate charge Qg- Minimize gate voltage swing

- Use fast body diode MOSFETSs (or SiC MOSFETs)-
Avoid body diode conduction (use synchronous
operation)- Add soft recovery snubbers

- Use snubber circuits- Reduce PCB loop inductance-
Apply damping techniques or ferrite beads

- Find optimal switching frequency (trade-off between
size and loss)- Use soft-switching topologies (e.g., LLC,
ZVS, ZCS)

- Use soft-switching techniques- Control timing to align
ZVS/ZCS- Use resonant converters

- Tune gate resistance- Add gate clamp / Zener diodes-
Use gate driver with miller clamp



Switching Loss Modeling Flow

Parasitic Parameter
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L Power switch modeling L Double Pulse Test

(DPT) Circuit
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L Circuit Simulation
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Applying the switching model to

the simulation of the actual
circuit.

o Import measured non-ideal A DPT test was implemented in
Measurement of Parasitic .l 1 . Lo . . 1
Capacitance Characteristics switching characteristics into SIMPLIS to evaluate switching
P ’ SIMPLIS device model. losses.

1200 —— C__ Datasheet

BRT rae. @ P SIMNPUS @€ 9 siMPU

600 088 TECHNOLOGIES TECHNOLOGIES

400

200 |- -

100 | 1 : : NTH4L‘02|Yﬂ1TDM’I L1°

0 100 200 300 400 500 600 e ® 5 100u
DC Bias S S

1.2k

7..

_lrcoe
#* I + NTH4L02|8_N
- ! + rens e
[ i ]m| * IR_BCDY
s BNt @ ] I
3_

R1 Qs

Vi1

Jo

C,s Measurement Circuit Simplis Level-3 Model DPT Circit

( ) simeus

TECHNOLOGIES

1 et i
fic=0 S (copic=a00 [ |(Roy

Used in circuit

Ref: T. Funaki, N. Phankong, T. Kimoto and T. Hikihara, "Measuring Terminal Capacitance and Its Voltage Dependen

ATA/I;EI ﬂi é ’t ﬂvak g for High-Voltage Power Devices," in IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1486-1493, June 2009 ROH EESCHWARZ
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How to Reduce Core Loss?

* Core loss in magnetic components primarily consists of two parts:

Hysteresis Loss: Caused by the repeated magnetization and demagnetization cycles within the
magnetic material.

| 1% Al Server 424 F T 3275 73 P Bk ER RS T &

Eddy Current Loss: Generated by circulating currents induced by time-varying magnetic fields inside

the core, resulting in heat dissipation.

* Core loss generally increases with frequency (f), flux density (B), and core volume.

Retentivity

Coercwlt

\

Saturation (Ms)

s | AP ﬂ.&i RHLRE

bi e1912 National Taipei University of Technology
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Eddy Currents
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How to Reduce Core Loss? (Continued)

1. Select Appropriate Low-Loss Core Materials
. Ferrite: Ideal for high-frequency applications (hundreds of kHz to MHz); exhibits low hysteresis and eddy current losses.

« Amorphous and Nanocrystalline Materials: Suitable for medium-frequency and high-power applications; offer high saturation flux

#P° EClE LAB

density and low core loss.

. Powdered Iron: Tolerant to DC bias but generally has higher losses; should be used selectively based on application needs.
2. Control Peak Flux Density (B,,,4x)

o Avoid core saturation by keeping B,,,,, below the recommended limits for the chosen material.

o  Forhigh-frequency ferrites, it's common to keep B,,,,, below 0.2-0.3 T to minimize losses.

. Flux density design depends on power density, operating temperature, and efficiency targets.
3. Reduce Switching Frequency

. Core loss typically increases nonlinearly with frequency.

. Use parametric design approaches to find an optimal trade-off between efficiency and converter size.

4. Optimize Core Geometry and Winding Layout
. Use core shapes that provide a short magnetic path and compact volume while meeting the required inductance.
o Magnetic flux cancellation through winding design: Techniques such as symmetrical or reverse winding can help reduce localized core loss.

o Integrate external inductance into the magnetic structure: For example, combining leakage inductance into transformer design improves power density
and reduces heat concentration. @)

| e BlE g RME LY ROHDE

&
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How to Reduce Core Loss? (Continued)

5. Use Air Gaps and Laminated Structures Wisely

. Air gaps help prevent saturation, especially in energy storage inductors. However, fringing fields around the gap can increase localized loss.

6. Employ Multiphysics Simulation for Design Validation

0¥® ECIE LAB

. Use tools like Maxwell, COMSOL, or ANSYS to simulate:
o Magnetic field distribution
o Hotspots of thermal dissipation
o Effects of frequency and temperature on core behavior

7. Temperature Management

. Core loss is temperature-dependent:
o Hysteresis loss tends to decrease with rising temperature.
o Eddycurrent loss typically increases with temperature.

. A robust thermal management design (e.g., thermal paste, heat sinks, forced air cooling) is essential to maintain performance.
8. Use Accurate Core Loss Models

. Use Steinmetz equation for sinusoidal conditions:P,,,, = k - f% - B,ﬁax
. Since datasheet loss curves are often based on sinusoidal excitation, for real waveforms:
o IGSE (Improved Generalized Steinmetz Equation): Accurate for arbitrary waveforms.

o EEL (Extended Epstein Loss Model): Models multiple nonlinear regimes across varying frequencies and flux densities for better accuracy.

TAPE! b3 ROHDE & SCHWARZ
38 | A g%%lﬁ%%g ©ECIE Lab. All rights reserved AEEBEPRELERAD
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How to Reduce Core Loss? (Continued)

9. Key Techniques for Core Loss Measurement
Accurate measurement is critical to validate simulations and core loss models. Common methods include:

. Calorimetric Method: Measures temperature rise to estimate loss; suitable for low-loss or high-frequency cores.

#P° EClE LAB

o Two-Winding Method: Uses excitation and sensing windings with waveform integration to calculate flux and power.
10. Consider the Effect of DC Bias on Core Loss

DC bias shifts the operating point of the magnetic core, resulting in asymmetric B-H loop operation and increased loss:

o Expanded hysteresis area, leading to more energy loss per cycle

o Some materials (e.g., powdered iron) maintain stable magnetic behavior under high DC bias

Conclusion

To effectively reduce core loss in power converters, designers should:
. Select low-loss magnetic materials

. Optimize flux density and switching frequency

. Design efficient core geometry, gapping, and thermal paths

. Apply accurate simulation and modeling tools

. Consider real-world conditions like DC bias, temperature, and non-ideal flux paths

Y FXET IR

&
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Core Loss Type

Hysteresis Loss

Eddy Current Loss

High-Frequency Loss

Temperature-Dependent Loss

DC Bias-Induced Loss

Fringing / Leakage Loss

Non-Sinusoidal Excitation Loss

Core Geometry / Volume Impact

Improper Air Gap Design

Cause / Description

Energy loss during repeated magnetization
and demagnetization cycles. Related to flux
swing and frequency.

Losses from circulating currents induced by
changing magnetic fields; increases with
frequency® and core volume.

Significant increase in loss at high switching
frequencies (hundreds of kHz to MHz).

Core loss behavior changes with
temperature—especially conductivity and
hysteresis loop shape.

DC magnetization shifts the B-H operating
point off-center, increasing asymmetry and
loss.

Magnetic flux escaping near core gaps or
openings causes localized eddy currents and
heating.

Real-world flux waveforms (e.g., triangular or
trapezoidal) differ from ideal sinusoidal
assumptions.

Poor core shape or excessive path length
increases average magnetic path and
saturation risk.

Large or poorly placed air gaps cause
excessive fringing flux and localized heating.

Reduction Methods & Design Strategies

- Use low-loss materials (e.g., ferrite,
nanocrystalline)- Keep Bmax within
recommended range (e.g., < 0.3T)

- Use high-resistivity materials (e.g., ferrite)-
Laminate the core or use powdered cores-
Lower operating frequency or Bmax

- Select materials optimized for high
frequency (e.g., MnZn ferrite, nanocrystalline)-
Combine with Litz wire to reduce heating

- Ensure good thermal design- Use thermally
stable materials (e.g., nanocrystalline,
amorphous alloy)

- Use DC-bias-tolerant materials (e.g.,
powdered iron, High Flux)- Simulate magnetic
behavior under bias; design air gap properly

- Optimize air gap structure and position- Use
magnetic shielding or magnetic covers- Keep
windings away from air gaps

- Use advanced models (e.g., iGSE, EEL) to
estimate loss- Simulate using actual
excitation waveforms

- Use compact core shapes with short
magnetic paths (e.g., PQ, ER, planar cores)-
Reduce MLT and cross-sectional flux
imbalance

- Use distributed air gaps- Balance air gap
length and winding placement- Add non-
conductive barriers around the gap
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How to Reduce Copper Loss?

Copper loss refers to the I’R loss caused by current flowing through conductors (e.g., PCB traces, winding wires,
busbars).
°In power converters: Includes losses in MOSFET/IGBT interconnects, PCB traces, connectors, etc.
°In magnetic components: Includes losses in transformer or inductor windings due to DC resistance and
AC (skin/proximity effect) resistance.

Area Technique
Power Stage PCB Wider traces, heavier copper, shorter layout
Transformer/Inductor Use Litz wire, interleaved windings, reduce MLT

Address skin/proximity effect, simulate AC

High-frequency AC resistance

Reduce RMS current, use multiphase/interleaved

System Design T

Lower operating temperature to reduce copper

Thermal Management :
resistance

By combining electrical design, geometric optimization, and thermal management, copper loss can be
significantly reduced—leading to higher efficiency, better thermal performance, and longer component lifespan.

&
since1912  National Taipei University of Technology ©ECIE Lab. All I’Ig hts reserved SEEEPRZEBIELT
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How to Reduce Capacitor Loss?

Copper loss refers to the I’R loss caused by current flowing through conductors (e.g., PCB traces, winding wires,
busbars).

In power converters: Includes losses in MOSFET/IGBT interconnects, PCB traces, connectors, etc.
In magnetic components: Includes losses in transformer or inductor windings due to DC resistance and AC

(skin/proximity effect) resistance.

Loss Type Reduction Method
ESR Loss Use low-ESR caps, parallel configuration, good
layout

Dielectric Loss Use high-quality dielectrics (COG, film, polymer)

ESL-Induced Loss Place close to switches, minimize loop area

Thermal Effect Improve cooling, derate properly
ave @l 2 3B RY F%;HDE&SCHWARZ
:_’SiuLEISIHI National Taipei University of Technology ©ECIE Lab. All I’IghtS reserved ﬁ%ﬁ%mﬁ*;ﬁpﬂﬂgj
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Limitations in Efficiency Optimization of High-Power Power Converters:

e Spec: 1.2kW, 48V/12V
* Fsw:1.08MHz
* Peak Eff. : 98.11%

Loss(W)

45 T T T T T T T T
[] Conduction loss_pri

40

T

[] Driver loss pri

[ T, s loss_pri

30r [] Conduction loss_sec
B Driver loss_sec
>0l [ Copper loss
[] Core loss
[ Other loss

(%]
wh
T

—
h
T

10 20 30 40 50 60 70 80 90 100
Output power(%)

R FXY T IR

Since1912  National Taipei University of Technology ©EC|E Lab. All rlg hts reserved

Switching Loss

1. Adopting a ZVS (Zero-Voltage Switching) topology helps eliminate
switching loss during turn-on.

2. Wide Bandgap (WBG) devices (e.g., GaN, SiC) offer significantly
lower turn-off losses, enabling higher efficiency at high switching
frequencies.

Conduction Loss

1. Conduction loss in switching devices depends on their on-
resistance Rds,,and the specific device selection.

2. Atrade-off must be made between low conduction loss and thermal
handling capability.

Winding Conduction Loss

1. Limited space constrains the conductor cross-section and layout,
making it difficult to minimize resistance.

2. Athigh frequencies, skin and proximity effects increase AC lossesin
windings.

Passive Component Limitations (Magnetics & Inductors)

1. There is still room for optimization in the design of transformers and
inductors, including magnetic core material selection and
geometric layout.

2. Magnetic flux distribution, leakage inductance control, and thermal
design all affect overall system efficiency.

Physical Integration and Thermal Management

1. Power module packaging size limits available space for heat

dissipation and component routing, which constrains layout and

performance.
2. High power density designs require careful planning of heat
conduction and thermal pathways. ROHDE &SCHWA

BERBELRL ﬁFE’
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Al Power Supply
Demands

Passive components play a key role in high-frequency applications.

This image was generated by ChatGPT (OpenAl) based on a user-provided concept. The characters and setting are fictional and designed to illustrate the technical challenges faced by wide-
bandgap devices (such as GaN and SiC) in meeting the power demands of modern Al systems, particularly the limitations posed by magnetic components. This image is intended for
educational, research, or creative non-commercial use.

BT FXY T IR ROHDE
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What role does the power
electronics industry play in
the era of Al?



ChatGPT's power consumption is extremely high, using over 500,000 kilowatt-hours per day,
which is more than 17,000 times the electricity used by an average American household.

According to a report in The New Yorker, OpenAl's popular chatbot ChatGPT may consume over 500,000
kilowatt-hours of electricity daily to respond to approximately 200 million user requests. In comparison, the
average American household uses about 29 kilowatt-hours of electricity per day. By dividing ChatGPT's daily
electricity usage by that of a typical household, it is found that ChatGPT uses more than 17,000 times the
electricity of an average household each day.



— Total electricity consumption in 2012:
20,000 TWh*

(IT: 10% - 2,000 TWH)

Motor ighting
Drives -

ey

& |y ,iﬁ'g.’ [1, . o I

et A HER S M
.

-

1% efficiency improvement of power supplles in T eqmpment’?

20 TWH saving = 3 Nuclear Power Plants

Average of 1GW capacity at 7 TWH annual output

Ref: http://www.eia.gov/
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Transformer

PDU: Power
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Backup Unit 480VAC Power: { 3

HVDC Power RPP Bushar: Shelf 1. D2D xPU §

D2D: DC to ‘ >nslf o A — ;
DC Converter

v Supercaps/ BBU +400VDC or 800V +400VDC — 48V — 0.65V
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SI ce1912  National Taipei University of Technology

[Ref] Solid state transformer in datacenter applications, Rudy Wang, APEC2025. = gﬁgé% HERAT
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Server Power

Hard Disk

Regulated 12V/6V DIMM

Bus Converter PCle
Fan

— HVDC Vol
54V/12V Un-regulated oltage
800 VDC Bus Converter Regulator 0.8V/1.8V

=~

47, - . - ———— \\\
I’I N J I 3 4|:|1{ Lm:% rs;':{: Iy: ;gg:g . ‘\.
E 40-(;;.\/] ' - M'mv i
1 Q4} G, Luz3| sg, Co V 1 .
el | T seamipk | High Step-down
5 ERIE = Hiddimic- | Single-stage
1 ' 1
l ¢ i 688hldnse | Converter
: th]- ma 3| SR, :
i = bz,bwl e, ] = = H
E ek | (e
i MU'tl&haSE h ] !
\T
o &
TATIE:,CEJ ﬂ i i ’k ﬂ' g.* g [Ref] X. Lou and Q. Li, "Single-Stage 48 V/1.8 V Converter With a Novel Integrated Magnetics ROHDE &59+H WARZ
Since1912  National Taipei University of Technology and 1000 W/in3 Power Density," in IEEE Transactions on Industrial Electronics. EEEERRZBRAT
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Building the 800 VDC Ecosystem for Efficient, NVIDIA
Scalable Al Factories |

415 VAC Distribution

Today

13.8 - 35k VAC

" Medium | Main AC UPS
Utility “— Voltage Switch —

Compute
Rack
AC Dist 415 VAC

Network board 480 VAC - . 480vAc = Distribution 415 vac 415 VAC =

Unit =l ]

On-Prem Gen Dicsel :
e & B g @O L W W e
(Optional)

#P° EClE LAB

800 VDC Distribution

Future

Medium Voltage Rectifier or
Solid State Transformer

N -— bl DC Dist
Voltage || 1387 35K NAC| 800VDC o—
On-Prem Gen @_ F Network s E —
Battery Energy ) SEt"':;g‘;
Storage System |—| lﬁ orag!

| |H Campus Data Center Row | Rack Board
| i DC Dist - 800v-12V

13.8KVAC ‘ 800 vDC Hl] + 800 VvDC é"r:jé 800 VvDC ] _ 1
ﬁ@\ T E1=}

Kyber Rack

s https://developer.nvidia.com/blog/building-the-800-vdc-
_TAIPEI
e g%% l,n&Lﬂh%uikl% (©ECIE Lab. All rights reserved ecosystem-for-efficient-scalable-ai-factories/
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Trend of GPU Power Demand

2020 (Ampere) (Ampere) 2022 (Hopper)  (Ada Lovelace) 2024 (Blackwell)

i GB200

A100 o >
> o
< S S
¥ 2 5
) = =
IS = =
QD i
8 o & AN 2 S
8 O TDP: 400 W :8 O TDP: 700 W :E d TDP: 1000 W (singie B200)
O Die size: 826 mm? ' d Die size: 814 mm? " 0O Die size: 761.56 mm?

RTX 4090

%

GeForce RTX 3080 Ti GeForce RTX 4090 FE

Gaming and
Creator

0 TDP: 350 W O TDP: 450 W
T[LP: Max Thermal Design Power Power requirement of the GPU is keep increasing &
_TAIPEI
g ﬂ 2, é * ﬂa* g [Ref] https://www.nvidia.com/zh-tw/?ncid=no-ncid 68 %?%Hﬁnééggi%vgﬂegﬂz
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IBC:
Intermediate
bus converter

IBV:
Intermediate
bus voltage

| e AR R KB

Since1912 National Taipei University of Technology

Stage 1
Vcard IBV

| srithf% Al Server 44 K T 2578 F7aka T oL B MBI f

Peripheral Power Circuitry for the GPUs

IBC

48V 12V

Stage 2
VRMS VCore / VDD
~0.6-1.2V
V
VRMs EE
~1.35-1.5V
V
LDO s
~1.8V

2-stage approach: Versatile for GPUs with different voltage domains

[Ref] Y. Liang, P. R. Prakash, A. Nabih and Q. Li, "Design Optimization of a 3.3V Die size (mm?) @)
Bus Converter for Vertical Power Delivery in Next-Generation Processors," 2024 RO &
IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, USA, 2024 EEEERRIZBIRAST

Blackwell
-7 (2024)

400
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Tradeoff between IBC and System Density

LATERAL Power delivery
IBC IBV xPU

0600 43 12
— 0
Mother board — WW 80%

VERTICAL Power delivery

48V

Mother board

“Direct to Chip”

Mother board

_'“r's'i;'i! ERET IR . . o ;?SHDE

Secat$t National Titpel Unliversity of Technology [Ref] Direct to chip (DtC) DC-DC converters for Al chips, José A. Cobos, APEC2025. L@ _% % “EIREAT



Desigh and Implementation of a 1-kW
High-Frequency High-Efficiency
Intermediate Bus Converter for Al Server
Applications
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48V/12V 1kW Non-Isolated LLC converter
High-Frequency
Transformers
e Efficiency
e High Gain
Driver IC e Gain
regulation
e A/us
e Flathess
Power Switch (GaN) e Cost
ve @ 2 & #ﬂﬂ.)&g /NS = % ;%)HDE&S HWARZ
"?I.‘.E.*J o Y Loty a1 mizs ©ECIE Lab. All rights reserved < NSTC BIZXFSLBINZEE AEEEPEARAS



* Transformer-less topologies are dominated by
conduction loss and often require 10 or more

parallel switches to achieve high efficiency.

0¥® ECIE LAB

without transformer

48V-12V topology

with transformer

B Y PR T T2 8.
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48V-12V Topology Comparison
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"M

%4 l #
Buck converter [1][2] % % T

Zero-Inductor Voltage
Converter[3][4][5]

Resonant Switched-
Capacitor Converter[6][7][8]

LLC Converter[9][10] ©

Non-isolate LLC
Converter [11][12][13] o

Symmetric Hybrid Switched capacitor %
Converter(SHSC)[14]

Switched Capacitor Buck Converter
(SCB)[15][16][17]




Analysis Summary-Voltage stress comparison

* The design targets 48V input and 12V output.

* Except for the LLC, the other three topologies have similar switch stress.

Q>

LLC
Parameters
S1~S4 Vi
V.
0./0; o
Number of 6
switches

Y FXY I e

Since1912 National Taipei University of Technology

Voltage Stress

A

Non-isolate LLC

Parameters
S1/52
S3/S4

QI/QZ

Number of
switches

Energy Conversion and Intelligent Electronics

Laboratory

Voltage Stress

1N
I ———

it

|_
|_
S
V() -
4 %%%F
SN[ rerne e 02
|_
San

_|
S4
- SHSC N
Parameters  Voltage Stress
V.
S$1/S1n %
S 2 / SN Vin

S3/San ﬁ

S3/San 2
Number of g

switches

©ECIE Lab. All rights reserved

1\ g

L
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Q1
SCB
Parameters  Voltage Stress
V:
51/52 %
S3/54 Vin
V.
Q1/0Q> —
2
Number of 6
switches
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Analysis Summary

isw_Sec
isw Sec E&F' ELq E:i:l hay
iSW_pri . — i T | 1l = g T
w_pri
\ | ginng ®
[ _L isw_pri Y .
g lw_Sec
ﬂ L 1 i T T
! R oH =
Topology Name
: : I I
Primary switch I, AVGT[% 01(/ AvGTl 0 R}WG
current iy, ,,;(RMS) 7 L 4 (FI; +2) 22( N_; +1)
Np N, 1
Secondary Switch Iy ayeT Lo 4y6T( | +1) Io_ave( N, + 2)
Current i, soc(RMS) 4 4(11:[,_113 +2) \/E(II\\;—; 1)
: L N. I I I
Primary winding Iy aveT N—Il) 0.AvGTt 0_;1\1,/ GT 1\;)_AVG
current i, ,,;(RMS 2V2(7E + 2 2(45% + 4 &+ 1
W_prl( ) 2 \/E \/_( ) \/_( N1 ) N2
4 I T I
Secondary winding Io_avem m \/ Iy avc*(2N1* + 2N;Np + Np?) 0—';‘\‘,’2 G I\Z—AVG
current i, ¢..(RMS) 4 82N, + N,) V2 (4N—1 + 4) N, +1
1 P
All switch ZVS yes no
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Topology comparison

Primary switch current RMS value(A)
20 T T T T

Under the condition of a 12V output
voltage, the RMS currents of switches and
windings in four topologies are compared.
In switch current comparison, the SHSC 10
performs better.

In winding current comparison, the SHSC

topology also shows superior D' ' ' L '
erformance 200 400 600 800 1x10° By
P ' Primary winding current RMS value(A)
50 T | T T
40[ =
301 -
LLC

== == m= Non-isolate LLC
sunnnn SHSC
= mm = SCB

Secondary switch current RMS value(A)
80 T T T 1

200 400 600 800 1:10° By
Secondary winding current RMS value(A)
80 T T T T

200 400 600 800 1x10°



Topology comparison

* To achieve high power density, a higher frequency is needed to reduce transformer size. Due to varying input

me== Primary switch

= Sccondary switch

voltage requirements, architecture Non-isolate LLC was chosen for this design.

CJ

Topology Non-isolate LLC

* All switches ZVS e Allswitches ZVS * Secondary switches ZVS
e Allswitches ZVS * Secondary switches e Partial ZCS for all * Winding current is near DC,
Benefit  Secondary switches ZCS ZCS switches reducing AC losses
Primary-secondary * Lower secondary * Minimal switch/winding * Outputinductor allows
isolation switch/winding current current stress voltage regulation

stress than LLC e Minimal transformer turns ¢ Minimal transformer turns

* Larger primary side current
stress (square wave)
condition * No ZVS on primary switch

* More transformer turns * No ZCS on secondary

-------------------- switch

TAIPEI 7 ] 7
77 e ﬂ i i ’k ﬂ' a * g ai Energy Conversion and Intelligent Electronics
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* Higher switching/winding 'e unrealistic ZCS
Drawback losses

e Max transformer turns

* Resonant capacitors have
DC bias




Topology comparison
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By analyzing and calculating these losses, the appropriate

switches can be identified
Adjusting dead time or resonance frequency prevents

body diode conduction, so its loss are ignored.

s 1 S ol
Cy
Nl g CO
L Y ”
Tr RL
¢—o—I 1}
° + V, —
Lm NP NZ
°
S, L .
2 T&I Ss ih Tal Q2 1371

Laboratory

Since1912 National Taipei University of Technology

ltem Equation
Conduction
losS Isw_RMS 'Rds_on
ltem Equation
174 NPILm_max Q v
Toss lOSS stress Np + N (Ugd plt)
+ CissIn—— | R, f.
2 Voie " V) O
ltem Equation
. 1
Driver loss > Q4Vprvfs
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Topology comparison - -

* Since switches S3; and S, experience higher voltage stress, switches with higher voltage stress

Qs

ratings are chosen for the primary-side switches.

* Secondary-side switches Q1 and Q, with higher current ratings are chosen and connected in

parallel to reduce conduction loss. Vin

Comparison of Losses in Switches S, to S, Comparison of Losses in Switches Q, to Q,

12 . —— Conduction loss 435
== T,y loss 4 | = Conduction loss
10 - — Driver loss 3.5 J = Diriver loss
g . 3.
Loss(W) 2.5 ~
Loss(W) 2
4 - 1.5 4 ; oot
- <: .
2 o
0.5 ~ (000000000
ph Guumuuugnﬁ
0 - 0 -
EPC2023
FDMC007NOSLCDC EPC2069
800
800 e EPC2066
P, (W) 1000 NVTFWS005N08XL l ‘ P, (W) 1000 EPC067 ‘ ®
29 JT/A:&E': ﬂ i * ’t ﬂ' a * g a’\ Energy Conversion and Intelligent Electronics ) ROHDE &SCHWARZ
since1912  National Taipei University of Technology Laboratory ©ECIE Lab. All rg hts reserved SEEBEPRPRZEBIRLTE



PCB Winding Design

The transformer turns ratio can be determined by the power conversion ratio.

A two-legs core is used as the basis for PCB winding design.

V.
—=n+2
,
CNp Np
TN N,

Np:N,:N,=2:1:1

Winding W, diagram

= Tal %1 {5 Oz §
Q24 L

~F
_TAIPEI

80 & TECH ﬂ i * ’t ﬂ' H, * g a’\ Energy Conversion and Intelligent Electronics

Since1912  National Taipei University of Technology Laboratory
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Winding Wy, diagram

Winding W, diagram



PCB Winding Design

—————————————

83

Xp 10 8 | 6 4 1 2
1 }
1 1
X 3 4 : 5 6 ! 7 * To achieve high power density, a 16-layer
| |
X 3 41 S 6 ! 7 PCB is used to distribute current stress. The
|
Equivalent Ry p(Rgc) 0.4 0.5 ! 0.66 1 . 2 parallel layers for windings Wp, W,, and I/,
|
| . .
Equivalent Ry1 (R ) 033 025! 02  0.17 i 0.14 being Xp, X1, and X , respectively.
I . . .
Equivalent Ry, (Rz.) 0.33 025! 0.2 0.17 :0.14 Normalized values are used to compare
o ' I losses under different conditions.
RMS current of winding Wp (I5) | 1 :
I I * For the integrated resonant capacitor design,
RMS current of winding W, (L) | 1 ! i _ o
I : placing the primary winding on the top
. . I |
RMS current of winding W (lyns) : 3 : outer layer is preferred. Considering via
o o |
Winding Wp Ry loss 0.4 0.5 : 0.66 1 2 usage may reduce its integrity, a 6/5/5
|
Winding W, R, loss 0.33 0.25, 0.2 0.17 , 0.14 winding configuration is adopted.
| |
Winding I/, Ry, loss 3 2251 1.8 1.5 1 1.29
| |
Total winding R, loss 3.73 3 E 2.66 2.66 1 3.43
- — : &
_TAIPEI &\ Energy C jon and Intelligent Electroni
e B i{.’*“#‘.}."; SN Covoiory 0 o mENGENT EECTIONES S EGIE Lab. All rights reserved A EEETBEABHAS



PCB Winding Design

* High-frequency current causes skin and eddy effects, concentrating current near the conductor surface.
* Proximity effect causes current to concentrate on adjacent surfaces of two conductors, increasing losses.

» Skin effects
» Proximity effects

Current Variation : 0~10 A

Frequency variation : 50k~1KHz

Same directions of

Different directions of

J[AmA2]

current

9.0000E+08
I 8.4000E+06
7.5000E+06

7.2000E+08
6.6000E+06
6.0000E+06
5.4000E+06

| 3.6000E406
3.0000E+06
2.4000E+06

1.5000E+06
1.2000E+406
6.0000E+05
0.0000E+00

4.8000E-05 ;‘:‘
- 12000806 Freq = 50kHz I

i

. =

H [Aim]

12781.4023
l 11931 2848
11081.1270
10230.9893
93808516

8530.7139
7680.5767

- 6830.4390
59803013

5130.1636

4280.0259 N

3429 8887

i i

"

: \

577510 | v e e
17296133
879.4756
29,3380

S,

[

l'\ Jl oo

L

H [Aim]

11949.101&6
.11152 9795
10356.8584
95807373
87848152

T7968.4941
71723730

- 6376.2515
5580.1299
47840088

39878872
3191.7659

23958445

1599 5232
803.4017
72803

current
v
'y o>

Wire radius 0.5mm Wire radius 0.5 mm
Wire length 1 mm Wire length 1 mm Current Current 5A
Current 5A frequency 500 kHz frequency — TMHz frequency 1M Hz
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84 &7 TEcH ﬂ }_ i ’t ﬂ' a * g Energy Conversion and Intelligent Electronics @ECIE Lab. All rights reserved Z}?@ H ﬁnig _é %%-I.lﬁ“p’é\/g E'Iz

Since1912 National Taipei University of Technology

Laboratory



PCB Winding Design

Interleaved windings can effectively reduce AC resistance

MMF
m=1 m=2 m=3 m=4 m=4 m=3 m=2 m=1
ANI - -4+ —— A — = — N T R U T
I I I I I | I I | I I I I I I
BNLI |-~ 71—~ "7T72 —Tor- gl i e et e
R (s S e S DR
NI -4 —t-—r————t—-—rF——"——t——r———— G
I I I I I I I I I I I I I I >
e o ™M <
E El.|5|o]5
s Sl Sls| &l
cElalsElals]lals
3] ] 3] ]
Q Q Q Q
11)] (7] (7)) (7]
Non-Interleaved Windings
MMF
m=1 m=1 m=1 m=1 m=1 m=1 m=1 m=1
4NI |- -+ ——F—d——F—— b —dm—t—— b —d——d—— b ———— = — b — ——
T
R A S S Sl S A et S RS
NI

TN TN TN

gap
Secondary 1
gap
gap
Secondary 2
gap
gap
Secondary 3
gap
gap
Secondary 4

Interleaved Windings
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5 1 h h : Conductor thickness

= Z —
Tfstt 6 § : Skin depth
\/ D

MMF = NI = HI

MMF(e)

MMF(e) : Final value
m= |MMF(e) — MMF(e — 1)

MMF(e — 1) : Starting value

¢ sinh(Q) — sin(Q)
2 cosh(?) + cos(Q) ¢

¢ sinh(Q) — sin(Q)
2 cosh(?) + cos(Q) %

Rac_skin -

Ry proxlmtty(m) = (2m — 1)2

Rgc skin - AC resistance due to the skin effect

Rac proximety : AC resistance due to the proximity effect

Total AC resistance Rac_total = Rac_skin + Rac_proximtty

_ 2
Rac loss = Rac_total : Irms



Transformer Core Design

kW * By comparing the PCV curves of different core materials, the
PCV(F)

appropriate material can be selected

1x10*
* Under the calculation condition of a 1 MHz switching frequency,

DMEGC’s material DMR53 was selected

1x10°

DMR53 #RMR#E
DMR53 Material Characteristics

100

etk Ak BLEIME
CHARACTERISTICS CONDITIONS VALUE
10 VIS W
WaHT % 10kHz, <0.25mT 25°C | 900+25%
Initial Permeability
25°C 560
TR FNREIER N 5RFE Bs
UAIRLES NI Bs (mT) 50Hz, 1194A/m
]D Saturation Magnetic Flux Density
1 0.2 0.3 0.4 100°C 460
B(T)

DMR53 s DMR50 sssss DMR51W
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Transformer Core Design

kW
Pcv (F)

110"

1x10°

By comparing the PCV curves of different core materials, the
appropriate material can be selected
Under the calculation condition of a 1 MHz switching frequency,

DMEGC’s material DMR53 was selected

1x10°

110 -

DMR53 #RMR#E
DMR53 Material Characteristics

/

hw;ﬂ,/
100

91 1

£,(MHz)

it R BRI
CHARACTERISTICS CONDITIONS VALUE
HIEEE S A 1y
VAL 10kHz, <0.25mT 25°C 900+25%
Initial Permeability
25°C 560

TRLFN IR N 5 BT Bs (mT)

50Hz, 1194A/m
Saturation Magnetic Flux Density

100°C 460

~7
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Transformer Core Design

2w

\ /@ (\

leg cross-sectional area

A

\ 4

Top view of the Ul core

2R

a

A 4

Jis
1.

Front view of the Ul core
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r : Center leg radius R : Winding range lg : Center leg high

d

: Core base thickness l. :air gap

Define the relationship Q between the winding range R

and the cylinder radius r

R=rQ

w = 2R = 2rQ

To avoid partial saturation of the magnetic flux, the cross-sectional

area at the top and bottom of the core must be equal to the cross-

sectional area of the cylinder

leg cross-sectional area A, = mr? = 2ar

—p T2 = a2r

_7TT'
AT &
RO

: &S
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Transformer Core Design

» After optimizing the core to reduce its volume, reparametrize to simulate copper loss and core loss

RE|
:

Sel
Q="
Sett
Q=
Sett
Q=

A (REIREIRE o8
Ik

Core loss

Time [us]

abs(SolidLoss) [W]

=1.2m "~ 3mm Copper loss o
TAII’EI 1 Energy Conversion and Intelligent Electronics _ ?SH DE&SCHWARZ
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Transformer Core Design

Use MATLAB to plot the simulated loss results from Maxwell as a contour map corresponding to the volume.

3

2.8

Q=1.2m~3mm
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Transformer Core Design

* Plot the optimal total loss curve of the transformer based on the minimum volume for different losses
3

* Due to power density constraints, a design with a

volume less than 1000mm? is chosen 2.8

4.2 T T T T T

M2 E=S =} o =%
T T T T T
1 1 1 1 I

Total Loss(W)

28671 7

24 i i i i i
600 800 1000 1200 1400 1600

Volume(mm®)

P 4
91 é,j/A'lg’cE': n i * ’t ﬂ' a * g a’\ Energy Conversion and Intelligent Electronics
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Experimental Verification

Parameters Specifications
Input Voltage 40-60Vdc
Output Voltage 10-15Vdc
Output Power 1200W
Switching Frequency 1.08MHz
Peak Efficiency 98.11%

Length / Width / Height 30mm/20mm/7.4mm
Power Density >4430 W/in®

i ELIEG"'E

B ..

i
E-’@:ES Designed by Zine
RE4l==EEipE3 : Advisor ¢ Prod. Yu-Chun Liu

EII'"D‘E’ ECIE Lab. All rights reserved
UEL
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Experimental Verification

Efficiency(%)

99 [] Ref[14] Ref[13] [ | Wss
| 420W _993.1% 840W 99.31% | R‘ef[15]‘
| 800W/in 2.5kW/in COW 99%
y Ref[12] 4.07kW/in3
1kKW 98.5%
. This work
L1 1.07kwrin® et 177 (I \ o 1.2kW 98.1%
Flex[8] 900W 98.4% " Delta[9] 4.43KW/in® []
”1 .3W 97.8% 1.6kW/in> VICOR[S] [ 800w 933%
98 |'° 826W/in> 1.2kW 98% o SKW/In
ril 3KW/in3 MPS[6]
1 1.1kW 97.8% D 500w 97.5% Ref [12]
T— # 1.3kW/in’ 3.31kW/in3 1kW 97.8%
- ercia] L 5.siw/in®
W 97.5%  [] [ Flex(7] g 1kKW 97.5%
1.22kW/in3 EPC[1 800w 97.4% % 5kW/in3
97 1.2kW 97.3% 3.3kW/in (only secondary)
1.47kW/in3
rRef[16] ] [B ;I;(;\CI)VRE;;]% [ ] Commercially available products
720W 96.5% [§ 2.6kW/in3 ] IEEE Paper
2kW/in3
kW
500 1500 2500 3500 4500 Power den51ty(in—3)
&
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Experimental Verification

With a 48V input, 30 ns dead

time, and 1.08 MHz switching

frequency

ZVS is achieved under all load

conditions.

n . 48V, 50% load

' Voltage across switch S,

[ R e ] A s e R

i
N
B Wop: 36V

B e 11585V

ﬂii»ﬂ&i?

* Since1912 National Taipei University of Technology
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- - = N - m Muta 130 ns/ a5 HSEE
Vi : 48V, 10% load .18V 2SGs  Am@S2m  we *
|
i 1 _‘ll ol '|i RS 7L |

l Voltage across switch S,

| i
| f

1 | 1 .I
.
—T— . N I ———

n.r--——r-‘u-“---'-ﬁ-w-—- gl

o] Ihlmm B op:2a4v I_i Viap: 4836V B mean: 1178V
Bl v 500 ww B o BT @
«“ B a R L & &SI [ ko 130 maf aF | a8
164y L5G5afs  -1ESEps Ll o

Vi, : 48V, 100% load
|
T L o

I'.l {r h‘l s T |

i ) PR ISR, R

; Voltage across switch S,

R e I e i W T i g B

i
| . i

| Voltage across switch S,/ Voltage across switch Qs

!
ik

s

| N et M v

o+
. 10878 Mt B vop: 24V B Vop: a8V T E Wean 12155V Q
B oo 50 wov SB v JE

: &S
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Experimental Verification

Due to excessive temperature, the input of 40V was only
tested up to 1100W.

The peak efficiency reached 98.11%.

The switching frequency was 1.08 MHz.

= 60V =V, =54V

Efficiency(%) — | = 48V Vip = 40V

99
98
97
96
95
94

93

92
0 100 200 300 400 500 600 700 800

oare @l 2§ HH Y
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900

1000 1100 1200
Output power(W)

a’\ Energy Conversion and Intelligent Electronics

V; 40V 48V 54V 60V
Peak 98.11% 98.10% 97.82% 97.47%
Efficiency
Full Load 95.39% 96.27% 96.96% 97.05%
Efficiency
V,(10% load) 9.99V 12V 13.51V 15.02V
I, (100% load) 9.54V 11.58V 13.15V 14.69V
V, (V) [/ = 48V in = 40V
16
15 r——————2—+—o—9¢o o
14

13

12 e ————— ¢ .

11

10

9

8

0 100 200 300 400 500 600

©ECIE Lab. All rights reserved
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Experimental Verification

Due to proximity effects, edge effects, and non-ideal conditions, actual transformer losses are difficult to calculate.

The designed PCB winding is imported into Maxwell and simulated with Simplorer to estimate transformer losses.

w
T |
o
— x J
=T o i —
] — o __W
_: - o s i = o
. =
TTT[TTTI[T1T '. i i
| & =
[ =T =T

v

W g, s weo

o { ; [5‘#

B
|
[T

@i

_|||||||||||||||||||
aTie aris i sare it

AR RERRS RERRN LRRR
a0 orhs A wrds &
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48 V input, 1.2 kW simulation results:

» Copper loss: 14.45 W

> Core loss: 1.54 W

Loss Plot 1 transient_loss_48V_1.2KW An SyS
2022 R2
20
——CoreLoss E
Trace Char | Setup1 : Transient
C15
avg 15406
Fi0 2
05
0.0
30
——SolidLoss
Trace Char | Setup1 : Transient
avg 14.4520 Lo
10
T T T T T T T 0
1.0 15 20 25 30 35 4.0 45 50
Time [us]
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Experimental Verification

Loss analysis shows that beyond conduction and copper losses, other losses (via, PCB, capacitor, etc.) also exist. Optimizing them can

further improve efficiency.

Smaller primary-side switches (3 mm x 3 mm) result in higher conduction losses compared to the secondary side. Future designs

must balance switch size and power loss.

Efficiency(%)
98.5
|/, = 48V

98
97.5

97

96.5

96

95.5

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Output power(W)
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Loss(W)

45 T T T T T T T T
[] Conduction loss_pri

40t
[] Driver loss_pri

ST Toss loss_pri

30+ [] Conduction loss_sec

25+ [ Driver loss_sec

20

15

10

10 20 30 40 50 60 70 80 90
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S Key Technologies for High Power Density and High Efficiency Converters
=
©
~ Summary of Key Technical Insights
&‘ * Topology Optimization: Select soft-switching topologies (e.g., ZVS/ZCS) to reduce switching losses
 Magnetics Integration and Design: High-frequency operation requires careful core and winding
optimization
* Component Selection: Utilize wide bandgap devices (GaN/SiC) and low-ESR/ESL capacitors for
improved performance
* Thermal Management: Higher power density increases thermal stress; early thermal modeling is
essential
Importance of Pre-Simulation
* |dentifies potential hotspots and EMI issues early in the design stage
* Enables optimization of magnetics, PCB layout, and thermal paths before hardware prototyping
* Reduces the number of design iterations and shortens development cycles
* Supports system-level trade-offs in performance, size, and cost
Conclusion:
Pre-simulation is a critical first step toward achieving high efficiency and reliability in high power density
converter designs.
o | 2 RLEAHARE Sonpeaschwanz
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