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I. Introduction and Background
• Laboratory Overview and Research Focus
• Project Objectives and Application Scenarios: AI 

Server and Future Power Demands
II. Power Converter Loss Reduction Techniques

• How to Reduce Conduction Loss
• How to Reduce Switching Loss
• How to Reduce Core Loss
• How to Reduce Copper Loss
• How to Reduce Capacitor Loss
• Converter Optimization Summary

III. Key Technologies for IBC Module Design
• High-Frequency Magnetics

• Key Aspects of High-Frequency Core Design
• Trade-Off Between Copper and Core Loss
• Core-Flux Cancellation Techniques

• Magnetic Simulation
• Modularization of Excitation and Inductive 

Components
• Parameter Extraction and Practical Modeling 
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IV. Application and Design Case Studies
• Application Example

• IBC Power Module for AI Server Systems
• Design Case Sharing

• Loss Analysis and Excitation Inductor Design
• PCB Winding Design Techniques
• Transformer Design Considerations
• Measurement and Validation in Practical Implementation

V. Conclusion and Future Perspectives
• Summary of Optimization Results and Integration Achievements
• Future Research Directions and Industrial Collaboration Potential
• Q&A and Open Discussion
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Key Technologies for High-Power-Density Modules
• Semiconductor (GaN, SiC etc.)

• Conduction loss

• Switching loss

• Body diode loss

• Integrated driver 

• Magnetics 

• Core loss

• Core Material

• Core structure

• Copper loss

• Winding arrangement

• PCB manufacturing capability 

• Capacitors

• ESR loss

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼2𝑅𝑅𝑒𝑒𝑒𝑒

𝑃𝑃𝑠𝑠𝑠𝑠 =
1
2
𝑉𝑉𝑉𝑉(𝑡𝑡𝑜𝑜𝑜𝑜 + 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜)𝑓𝑓𝑠𝑠𝑠𝑠

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐼𝐼 ∗ 𝑉𝑉𝑓𝑓 ∗ 𝑡𝑡𝑑𝑑 ∗ 𝑓𝑓𝑠𝑠𝑠𝑠
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How to Reduce Conduction Loss
1. Select Devices with Low On-Resistance

• Use low𝑹𝑹𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 switches:
Conduction loss is proportional to the square of the current. Therefore, choosing switching devices with
lower on-resistance can significantly reduce conduction loss.

• Adopt wide bandgap devices (e.g., SiC / GaN):
These components maintain extremely low on-resistance even under high voltage and high-frequency
conditions, making them ideal for high power density applications.

2. Parallel Switching Devices
• Connecting multiple switches in parallel can share current and reduce the equivalent on-resistance.
• However, ensure even current distribution; otherwise, thermal imbalance or overload may occur.

3. Switch Selection and Thermal Management
• Evaluate𝑹𝑹𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 variation with temperature:

The on-resistance of MOSFETs increases with temperature. A good thermal design helps mitigate this
increase and keeps conduction losses low.

• Check the datasheet 𝑹𝑹𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 at 125°C, not just at room temperature, to ensure reliable performance under
actual conditions.
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How to Reduce Conduction Loss (Continued)
4. Consider Circuit Topology Effects on
Switch RMS Current
• Different converter topologies result in

different switch current waveforms and
RMS values. Even with the same
average current, conduction losses
may vary significantly.

• Example:
• In an LLC resonant converter, the

switch current is close to a
sinusoidal waveform, resulting in
lower RMS current and thus lower
conduction loss.

• In a Phase-Shifted Full-Bridge
(PSFB) converter, the switch
current is typically a rectangular
waveform, leading to a higher RMS
current and consequently greater
conduction loss.
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How to Reduce Conduction Loss (Continued)

Conclusion:
The key to reducing conduction loss in switching devices lies in optimal component selection, parallel design, 
control strategy, and thermal management. In high-current applications, conduction loss often becomes a 
major efficiency bottleneck—careful design and simulation are essential early in the process.

Conduction Loss Source Cause / Description Reduction Methods & Design Strategies

MOSFET / Switch RDS(on) Loss Power loss due to on-resistance during conduction: 
𝑃𝑃 = 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟

2 × 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
- Use low RDS(on) devices- Use wide bandgap devices 
(SiC, GaN)- Parallel switches to share current

Diode Forward Voltage Drop
Fixed voltage drop times current during conduction: 

𝑃𝑃 = 𝑉𝑉𝐹𝐹 × 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎
- Replace diodes with synchronous rectifiers (MOSFETs)-
Use Schottky or low Vf diodes

Transformer / Inductor Winding DCR Winding resistance causes I²R loss during current 
conduction

- Use thicker wires or multiple parallel strands- Reduce 
mean length per turn (MLT)- Use Litz wire at high 
frequency

PCB Trace Resistance Copper trace resistance causes I²R loss, especially under 
high current

- Widen traces or use heavier copper- Use multiple layers 
for current sharing- Shorten trace length

High RMS Current Even with same average current, higher waveform RMS 
causes more loss

- Use topologies with smoother current waveforms (e.g., 
LLC)- Optimize control strategy to minimize RMS

Temperature-Related Resistance Rise Conductor resistance increases with temperature:
𝑅𝑅 𝑇𝑇 = 𝑅𝑅𝑜𝑜(1 + 𝛼𝛼(𝑇𝑇 − 𝑇𝑇0))

- Improve cooling design- Place components away from 
heat sources- Use materials with better temp. stability

Unbalanced Current Sharing In parallel FETs or phases, current imbalance causes 
local overheating and increased loss

- Use current balancing resistors- Match gate resistors 
and layout symmetry- Apply active current sharing control

Long Conduction Path / High Loop Impedance Extended current paths add resistance and inductance - Optimize PCB layout- Use compact magnetic designs-
Place high-current components close together
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How to Reduce Switching Loss

𝑃𝑃𝑄𝑄𝑄𝑄,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑜𝑜𝑜𝑜 =
1
2
⋅ 𝑉𝑉𝐷𝐷 ⋅ 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ 𝑇𝑇𝑓𝑓_max ⋅ 𝑓𝑓𝑠𝑠

𝑃𝑃𝑄𝑄𝑄𝑄,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑜𝑜𝑜𝑜𝑜𝑜 =
1
2
⋅ 𝑉𝑉𝐷𝐷 ⋅ 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ 𝑇𝑇𝑟𝑟_max ⋅ 𝑓𝑓𝑠𝑠

Tutorial at ICPE 2019 – ECCE Asia in Busan, Korea. 
High Frequency Power Converter Design: Magnetics, Gate Driver, Control, and EMI
Jeehoon Jung, Yu-Chen Liu, Ching-Jan Chen,and Katherine A. Kim

1. Choose High-Performance Switching Devices
• Adopt Wide Bandgap Semiconductors (e.g., SiC/GaN MOSFETs):

• Faster switching speeds
• Lower on-resistance and switching capacitance

• Optimize Gate Driver Circuits:
• Use dedicated driver Ics
• Precisely control gate voltage to shorten charge/discharge time and reduce switching loss

2. Implement Soft Switching Techniques
• Zero Voltage Switching (ZVS) / Zero Current Switching (ZCS):

• Ensure voltage or current is near zero during switching transitions to minimize energy loss
• Use Resonant Converters (e.g., LLC Resonant Converters):

• Allow switches to operate under resonant conditions
• Reduce voltage-current overlap during switching and minimize losses

32
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How to Reduce Switching Loss (Continued)

Tutorial at ICPE 2019 – ECCE Asia in Busan, Korea. 
High Frequency Power Converter Design: Magnetics, Gate Driver, Control, and EMI
Jeehoon Jung, Yu-Chen Liu, Ching-Jan Chen,and Katherine A. Kim

4. Improve Circuit Design and Layout
• Minimize Parasitic Effects:

• Shorten PCB traces to reduce parasitic inductance and capacitance
• Use low-impedance PCB layout and shielding techniques to suppress ringing and EMI

5. Thermal Management
• Ensure adequate cooling (e.g., heat sinks or fans) to prevent overheating, which can increase losses and 

reduce component lifespan
Conclusion:
Reducing switching losses requires a multi-faceted approach, including component selection, circuit and layout
optimization, control strategy refinement, and system-level integration. Each solution should be tailored to the
specific application scenario to maximize efficiency and reliability.
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How to Reduce Switching Loss (Continued)
Switching Loss Source Cause / Description Reduction Methods & Design Strategies

Turn-on / Turn-off Loss
Voltage and current overlap during switching transition:

𝑃𝑃 =
1
2
𝑉𝑉 � 𝐼𝐼 � 𝑡𝑡𝑠𝑠𝑠𝑠 � 𝑓𝑓

- Use fast switching devices (e.g., SiC/GaN)- Optimize 
gate driver strength- Reduce parasitic inductance

Output Capacitance Loss (Coss)

Energy to charge/discharge output capacitance every 
cycle:

𝐸𝐸 =
1
2
� 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 � 𝑉𝑉2

- Choose devices with low Coss- Use ZVS techniques-
Optimize dead time

Gate Charging Loss
Loss due to charging/discharging gate capacitance: 

𝑃𝑃 = 𝑄𝑄𝑔𝑔 � 𝑉𝑉𝑔𝑔 � 𝑓𝑓
- Use gate driver with adaptive turn-on profile- Reduce 
gate charge Qg- Minimize gate voltage swing

Body Diode Reverse Recovery Loss Reverse recovery current during body diode conduction 
and turn-off

- Use fast body diode MOSFETs (or SiC MOSFETs)-
Avoid body diode conduction (use synchronous 
operation)- Add soft recovery snubbers

Parasitic Ringing Loss Resonance between device parasitics causes high-
frequency ringing and loss

- Use snubber circuits- Reduce PCB loop inductance-
Apply damping techniques or ferrite beads

High Switching Frequency Loss Switching loss scales with frequency; higher frequency 
increases energy per second

- Find optimal switching frequency (trade-off between 
size and loss)- Use soft-switching topologies (e.g., LLC, 
ZVS, ZCS)

Hard Switching Loss in High Voltage/Current Large overlap of Vds and Id during transitions causes 
substantial power loss

- Use soft-switching techniques- Control timing to align 
ZVS/ZCS- Use resonant converters

Driver Undershoot / Overshoot Improper gate driver behavior causes incomplete 
switching or oscillation

- Tune gate resistance- Add gate clamp / Zener diodes-
Use gate driver with miller clamp
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Switching Loss Modeling Flow

Measurement of Parasitic 
Capacitance Characteristics.

Import measured non-ideal 
switching characteristics into 

SIMPLIS device model.

A DPT test was implemented in 
SIMPLIS to evaluate switching 

losses.

Applying the switching model to 
the simulation of the actual 

circuit.

35

Parasitic Parameter 
Measurement

Ref: T. Funaki, N. Phankong, T. Kimoto and T. Hikihara, "Measuring Terminal Capacitance and Its Voltage Dependency
for High-Voltage Power Devices," in IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1486-1493, June 2009

Power switch modeling

Coss Measurement Circuit Simplis Level-3 Model

Circuit Simulation

DPT Circit

Double Pulse Test
(DPT) Circuit

Used in circuit
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How to Reduce Core Loss? 
• Core loss in magnetic components primarily consists of two parts:

Hysteresis Loss: Caused by the repeated magnetization and demagnetization cycles within the 
magnetic material.
Eddy Current Loss: Generated by circulating currents induced by time-varying magnetic fields inside 
the core, resulting in heat dissipation.

• Core loss generally increases with frequency (f), flux density (B), and core volume.
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How to Reduce Core Loss? (Continued)
1. Select Appropriate Low-Loss Core Materials

• Ferrite: Ideal for high-frequency applications (hundreds of kHz to MHz); exhibits low hysteresis and eddy current losses.

• Amorphous and Nanocrystalline Materials: Suitable for medium-frequency and high-power applications; offer high saturation flux 
density and low core loss.

• Powdered Iron: Tolerant to DC bias but generally has higher losses; should be used selectively based on application needs.

2. Control Peak Flux Density (𝑩𝑩𝒎𝒎𝒎𝒎𝒎𝒎)

• Avoid core saturation by keeping 𝑩𝑩𝒎𝒎𝒎𝒎𝒎𝒎 below the recommended limits for the chosen material.

• For high-frequency ferrites, it's common to keep 𝑩𝑩𝒎𝒎𝒎𝒎𝒎𝒎 below 0.2–0.3 T to minimize losses.

• Flux density design depends on power density, operating temperature, and efficiency targets.

3. Reduce Switching Frequency

• Core loss typically increases nonlinearly with frequency.

• Use parametric design approaches to find an optimal trade-off between efficiency and converter size.

4. Optimize Core Geometry and Winding Layout

• Use core shapes that provide a short magnetic path and compact volume while meeting the required inductance.

• Magnetic flux cancellation through winding design: Techniques such as symmetrical or reverse winding can help reduce localized core loss.

• Integrate external inductance into the magnetic structure: For example, combining leakage inductance into transformer design improves power density 
and reduces heat concentration.
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How to Reduce Core Loss? (Continued)
5. Use Air Gaps and Laminated Structures Wisely

• Air gaps help prevent saturation, especially in energy storage inductors. However, fringing fields around the gap can increase localized loss.

6. Employ Multiphysics Simulation for Design Validation

• Use tools like Maxwell, COMSOL, or ANSYS to simulate:

o Magnetic field distribution

o Hotspots of thermal dissipation

o Effects of frequency and temperature on core behavior

7. Temperature Management

• Core loss is temperature-dependent:

o Hysteresis loss tends to decrease with rising temperature.

o Eddy current loss typically increases with temperature.

• A robust thermal management design (e.g., thermal paste, heat sinks, forced air cooling) is essential to maintain performance.

8. Use Accurate Core Loss Models

• Use Steinmetz equation for sinusoidal conditions:𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘 � 𝑓𝑓𝛼𝛼 � 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚
𝛽𝛽

• Since datasheet loss curves are often based on sinusoidal excitation, for real waveforms:

o iGSE (Improved Generalized Steinmetz Equation): Accurate for arbitrary waveforms.

o EEL (Extended Epstein Loss Model): Models multiple nonlinear regimes across varying frequencies and flux densities for better accuracy.
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How to Reduce Core Loss? (Continued)
9. Key Techniques for Core Loss Measurement

Accurate measurement is critical to validate simulations and core loss models. Common methods include:

• Calorimetric Method: Measures temperature rise to estimate loss; suitable for low-loss or high-frequency cores.

• Two-Winding Method: Uses excitation and sensing windings with waveform integration to calculate flux and power.

10. Consider the Effect of DC Bias on Core Loss

DC bias shifts the operating point of the magnetic core, resulting in asymmetric B-H loop operation and increased loss:

• Expanded hysteresis area, leading to more energy loss per cycle

• Some materials (e.g., powdered iron) maintain stable magnetic behavior under high DC bias

Conclusion

To effectively reduce core loss in power converters, designers should:

• Select low-loss magnetic materials

• Optimize flux density and switching frequency

• Design efficient core geometry, gapping, and thermal paths

• Apply accurate simulation and modeling tools

• Consider real-world conditions like DC bias, temperature, and non-ideal flux paths
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Core Loss Type Cause / Description Reduction Methods & Design Strategies

Hysteresis Loss
Energy loss during repeated magnetization 
and demagnetization cycles. Related to flux 
swing and frequency.

- Use low-loss materials (e.g., ferrite, 
nanocrystalline)- Keep Bmax within 
recommended range (e.g., ≤ 0.3 T)

Eddy Current Loss
Losses from circulating currents induced by 
changing magnetic fields; increases with 
frequency² and core volume.

- Use high-resistivity materials (e.g., ferrite)-
Laminate the core or use powdered cores-
Lower operating frequency or Bmax

High-Frequency Loss Significant increase in loss at high switching 
frequencies (hundreds of kHz to MHz).

- Select materials optimized for high 
frequency (e.g., MnZn ferrite, nanocrystalline)-
Combine with Litz wire to reduce heating

Temperature-Dependent Loss
Core loss behavior changes with 
temperature—especially conductivity and 
hysteresis loop shape.

- Ensure good thermal design- Use thermally 
stable materials (e.g., nanocrystalline, 
amorphous alloy)

DC Bias-Induced Loss
DC magnetization shifts the B-H operating 
point off-center, increasing asymmetry and 
loss.

- Use DC-bias-tolerant materials (e.g., 
powdered iron, High Flux)- Simulate magnetic 
behavior under bias; design air gap properly

Fringing / Leakage Loss
Magnetic flux escaping near core gaps or 
openings causes localized eddy currents and 
heating.

- Optimize air gap structure and position- Use 
magnetic shielding or magnetic covers- Keep 
windings away from air gaps

Non-Sinusoidal Excitation Loss
Real-world flux waveforms (e.g., triangular or 
trapezoidal) differ from ideal sinusoidal 
assumptions.

- Use advanced models (e.g., iGSE, EEL) to 
estimate loss- Simulate using actual 
excitation waveforms

Core Geometry / Volume Impact
Poor core shape or excessive path length 
increases average magnetic path and 
saturation risk.

- Use compact core shapes with short 
magnetic paths (e.g., PQ, ER, planar cores)-
Reduce MLT and cross-sectional flux 
imbalance

Improper Air Gap Design Large or poorly placed air gaps cause 
excessive fringing flux and localized heating.

- Use distributed air gaps- Balance air gap 
length and winding placement- Add non-
conductive barriers around the gap40
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How to Reduce Copper Loss? 
Copper loss refers to the I²R loss caused by current flowing through conductors (e.g., PCB traces, winding wires, 
busbars).

•In power converters: Includes losses in MOSFET/IGBT interconnects, PCB traces, connectors, etc.
•In magnetic components: Includes losses in transformer or inductor windings due to DC resistance and 
AC (skin/proximity effect) resistance.

Area Technique
Power Stage PCB Wider traces, heavier copper, shorter layout

Transformer/Inductor Use Litz wire, interleaved windings, reduce MLT

High-frequency AC Address skin/proximity effect, simulate AC 
resistance

System Design Reduce RMS current, use multiphase/interleaved 
topology

Thermal Management Lower operating temperature to reduce copper 
resistance

By combining electrical design, geometric optimization, and thermal management, copper loss can be 
significantly reduced—leading to higher efficiency, better thermal performance, and longer component lifespan.
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How to Reduce Capacitor Loss?
Copper loss refers to the I²R loss caused by current flowing through conductors (e.g., PCB traces, winding wires, 
busbars).

In power converters: Includes losses in MOSFET/IGBT interconnects, PCB traces, connectors, etc.

In magnetic components: Includes losses in transformer or inductor windings due to DC resistance and AC 

(skin/proximity effect) resistance.

Loss Type Reduction Method

ESR Loss Use low-ESR caps, parallel configuration, good 
layout

Dielectric Loss Use high-quality dielectrics (C0G, film, polymer)
ESL-Induced Loss Place close to switches, minimize loop area
Thermal Effect Improve cooling, derate properly
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Limitations in Efficiency Optimization of High-Power Power Converters:

• Spec: 1.2kW , 48V/12V
• Fsw : 1.08MHz
• Peak Eff. : 98.11%

Switching Loss
1. Adopting a ZVS (Zero-Voltage Switching) topology helps eliminate 

switching loss during turn-on.
2. Wide Bandgap (WBG) devices (e.g., GaN, SiC) offer significantly 

lower turn-off losses, enabling higher efficiency at high switching 
frequencies.

Conduction Loss
1. Conduction loss in switching devices depends on their on-

resistance 𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜and the specific device selection.
2. A trade-off must be made between low conduction loss and thermal 

handling capability.
Winding Conduction Loss

1. Limited space constrains the conductor cross-section and layout, 
making it difficult to minimize resistance.

2. At high frequencies, skin and proximity effects increase AC losses in 
windings.

Passive Component Limitations (Magnetics & Inductors)
1. There is still room for optimization in the design of transformers and 

inductors, including magnetic core material selection and 
geometric layout.

2. Magnetic flux distribution, leakage inductance control, and thermal 
design all affect overall system efficiency.

Physical Integration and Thermal Management
1. Power module packaging size limits available space for heat 

dissipation and component routing, which constrains layout and 
performance.

2. High power density designs require careful planning of heat 
conduction and thermal pathways.
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Passive components play a key role in high-frequency applications.
This image was generated by ChatGPT (OpenAI) based on a user-provided concept. The characters and setting are fictional and designed to illustrate the technical challenges faced by wide-
bandgap devices (such as GaN and SiC) in meeting the power demands of modern AI systems, particularly the limitations posed by magnetic components. This image is intended for 
educational, research, or creative non-commercial use.

44



/ 12061ECIE Lab. All rights reserved. ECIE Lab. All rights reserved. Representational image. | Mikemacmarketing/ Wikimedia Commons (CC BY 2.0)



/ 12062ECIE Lab. All rights reserved. ECIE Lab. All rights reserved. 



ChatGPT's power consumption is extremely high, using over 500,000 kilowatt-hours per day, 
which is more than 17,000 times the electricity used by an average American household.

According to a report in The New Yorker, OpenAI's popular chatbot ChatGPT may consume over 500,000
kilowatt-hours of electricity daily to respond to approximately 200 million user requests. In comparison, the
average American household uses about 29 kilowatt-hours of electricity per day. By dividing ChatGPT's daily
electricity usage by that of a typical household, it is found that ChatGPT uses more than 17,000 times the
electricity of an average household each day.



– Total electricity consumption in 2012:
20,000 TWh*

1% efficiency improvement of power supplies in IT equipment?

20 TWH saving = 3 Nuclear Power Plants
Average of 1GW capacity at 7 TWH annual output

Ref: http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2

(IT: 10% - 2,000 TWH)
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[Ref] Solid state transformer in datacenter applications, Rudy Wang, APEC2025.

Issues Related to Winding Operation at High Frequencies
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[Ref] X. Lou and Q. Li, "Single-Stage 48 V/1.8 V Converter With a Novel Integrated Magnetics 
and 1000 W/in3 Power Density," in IEEE Transactions on Industrial Electronics.
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Building the 800 VDC Ecosystem for Efficient, 
Scalable AI Factories

https://developer.nvidia.com/blog/building-the-800-vdc-
ecosystem-for-efficient-scalable-ai-factories/
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TDP: Max Thermal Design Power

GeForce RTX 3080 Ti
 TDP: 350 W

GeForce RTX 4090 FE
 TDP: 450 W

[Ref] https://www.nvidia.com/zh-tw/?ncid=no-ncid
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Trend of GPU Power Demand
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[Ref] Y. Liang, P. R. Prakash, A. Nabih and Q. Li, "Design Optimization of a 3.3 V 
Bus Converter for Vertical Power Delivery in Next-Generation Processors," 2024 
IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, USA, 2024
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• 按一下以編輯母片文字樣式
• 第二層

• 第三層
• 第四層

• 第五層

Design and Implementation of a 1-kW 
High-Frequency High-Efficiency 

Intermediate Bus Converter for AI Server 
Applications
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48V/12V 1kW Non-Isolated LLC converter 

• Efficiency 
• High Gain 
• Gain 
regulation 
• A/µs 
• Flatness 
• Cost

High-Frequency 
TransformersCooling

Power Switch (GaN) High-Integration PCB

Control 
IC

Driver IC
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48V-12V Topology Comparison

without transformer

48V-12V topology

with transformer

Resonant Switched-
Capacitor Converter[6][7][8]

LLC Converter[9][10]

Zero-Inductor Voltage 
Converter[3][4][5]

Buck converter [1][2]

Non-isolate LLC 
Converter [11][12][13]

Symmetric Hybrid Switched capacitor 
Converter(SHSC)[14]

Switched Capacitor Buck Converter
(SCB)[15][16][17]

• Transformer-less topologies are dominated by 

conduction loss and often require 10 or more 

parallel switches to achieve high efficiency.
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Analysis Summary-Voltage stress comparison

Parameters Voltage Stress

𝑆𝑆1/𝑆𝑆2
𝑉𝑉𝑖𝑖𝑖𝑖
2

𝑆𝑆3/𝑆𝑆4 𝑉𝑉𝑖𝑖𝑖𝑖

𝑄𝑄1/𝑄𝑄2
𝑉𝑉𝑖𝑖𝑖𝑖
2

Number of 
switches 6

Parameters Voltage Stress

𝑆𝑆1~𝑆𝑆4 𝑉𝑉𝑖𝑖𝑖𝑖

𝑄𝑄1/𝑄𝑄2
𝑉𝑉𝑖𝑖𝑖𝑖
2

Number of 
switches 6

Parameters Voltage Stress

𝑆𝑆1/𝑆𝑆1𝑁𝑁
𝑉𝑉𝑖𝑖𝑖𝑖
2

𝑆𝑆2/𝑆𝑆𝑁𝑁 𝑉𝑉𝑖𝑖𝑖𝑖
𝑆𝑆3/𝑆𝑆4𝑁𝑁
𝑆𝑆3/𝑆𝑆4𝑁𝑁

𝑉𝑉𝑖𝑖𝑖𝑖
2

Number of 
switches 8

Parameters Voltage Stress

𝑆𝑆1/𝑆𝑆2
𝑉𝑉𝑖𝑖𝑖𝑖
2

𝑆𝑆3/𝑆𝑆4 𝑉𝑉𝑖𝑖𝑖𝑖

𝑄𝑄1/𝑄𝑄2
𝑉𝑉𝑖𝑖𝑖𝑖
2

Number of 
switches 6

• The design targets 48V input and 12V output.

• Except for the LLC, the other three topologies have similar switch stress.

𝑆𝑆2

𝑆𝑆4

𝑆𝑆1

𝑆𝑆3 𝑄𝑄1

𝑄𝑄2

𝑆𝑆2

𝑆𝑆4

𝑆𝑆1

𝑆𝑆3

𝑄𝑄1

𝑄𝑄2

𝑆𝑆3

𝑆𝑆2

𝑆𝑆1

𝑆𝑆4

𝑆𝑆3𝑁𝑁

𝑆𝑆2𝑁𝑁

𝑆𝑆1𝑁𝑁

𝑆𝑆4𝑁𝑁

𝑆𝑆2

𝑆𝑆4

𝑆𝑆1

𝑆𝑆3

𝑄𝑄1 𝑄𝑄2

LLC Non-isolate LLC SHSC SCB

𝑉𝑉𝑖𝑖𝑖𝑖 𝑉𝑉𝑜𝑜 𝑉𝑉𝑜𝑜
𝑉𝑉𝑜𝑜

𝑉𝑉𝑜𝑜𝑉𝑉𝑖𝑖𝑖𝑖

𝑉𝑉𝑖𝑖𝑖𝑖

𝑉𝑉𝑖𝑖𝑖𝑖
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Analysis Summary

Topology Name LLC Non-isolate LLC SHSC SCB

Primary switch 
current 𝑖𝑖𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝(RMS)

𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴𝜋𝜋
𝑁𝑁1
𝑁𝑁𝑃𝑃

4

𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴𝜋𝜋

4 (𝑁𝑁𝑃𝑃𝑁𝑁1
+ 2)

𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴𝜋𝜋

8𝑁𝑁2𝑁𝑁1
+ 8

𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴

2 2(𝑁𝑁1𝑁𝑁2
+ 1)

Secondary Switch 
Current 𝑖𝑖𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠(RMS)

𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴𝜋𝜋
4

𝐼𝐼𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝜋𝜋(𝑁𝑁𝑃𝑃𝑁𝑁1
+ 1)

4(𝑁𝑁𝑃𝑃𝑁𝑁1
+ 2)

𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴𝜋𝜋

4𝑁𝑁2𝑁𝑁1
+ 4

𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴(𝑁𝑁1𝑁𝑁2
+ 1

2)

2(𝑁𝑁1𝑁𝑁2
+ 1)

Primary winding 
current 𝑖𝑖𝑤𝑤_𝑝𝑝𝑝𝑝𝑝𝑝(RMS)

𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴𝜋𝜋
𝑁𝑁1
𝑁𝑁𝑃𝑃

2 2

𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴𝜋𝜋

2 2(𝑁𝑁𝑃𝑃𝑁𝑁1
+ 2)

𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴𝜋𝜋

2(4𝑁𝑁2𝑁𝑁1
+ 4)

𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴
𝑁𝑁1
𝑁𝑁2

+ 1

Secondary winding 
current 𝑖𝑖𝑤𝑤_𝑠𝑠𝑠𝑠𝑠𝑠(RMS)

𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴𝜋𝜋
4

𝜋𝜋 𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴
2(2𝑁𝑁12 + 2𝑁𝑁1𝑁𝑁𝑃𝑃 + 𝑁𝑁𝑃𝑃2)

8(2𝑁𝑁1 + 𝑁𝑁𝑃𝑃)

𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴𝜋𝜋

2(4𝑁𝑁2𝑁𝑁1
+ 4)

𝐼𝐼𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴
𝑁𝑁1
𝑁𝑁2

+ 1

All switch ZVS yes yes yes no

𝑖𝑖𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖𝑠𝑠𝑠𝑠_𝑆𝑆𝑆𝑆𝑆𝑆

𝑖𝑖𝑤𝑤_𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖𝑤𝑤_𝑆𝑆𝑆𝑆𝑆𝑆
𝑖𝑖𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖𝑤𝑤_𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖𝑠𝑠𝑠𝑠_𝑆𝑆𝑆𝑆𝑆𝑆

𝑖𝑖𝑤𝑤_𝑆𝑆𝑆𝑆𝑆𝑆

𝑖𝑖𝑠𝑠𝑠𝑠_𝑆𝑆𝑆𝑆𝑆𝑆

𝑖𝑖𝑤𝑤_𝑆𝑆𝑆𝑆𝑆𝑆

𝑖𝑖𝑤𝑤_𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖𝑠𝑠𝑠𝑠_𝑆𝑆𝑆𝑆𝑆𝑆

𝑖𝑖𝑤𝑤_𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑤𝑤_𝑆𝑆𝑆𝑆𝑆𝑆

𝑖𝑖𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝

75



Topology comparison
Primary switch current RMS value(A) Secondary switch current RMS value(A)

Primary winding current RMS value(A) Secondary winding current RMS value(A)
𝑃𝑃𝑜𝑜 𝑃𝑃𝑜𝑜

𝑃𝑃𝑜𝑜

• Under the condition of a 12V output 

voltage, the RMS currents of switches and 

windings in four topologies are compared.

• In switch current comparison, the SHSC 

performs better.

• In winding current comparison, the SHSC 

topology also shows superior 

performance.

LLC

Non-isolate LLC

SHSC

SCB
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Topology LLC Non-isolate LLC SHSC SCB

Benefit

• All switches ZVS
• Secondary switches ZCS
• Primary-secondary 

isolation

• All switches ZVS
• Secondary switches 

ZCS
• Lower secondary 

switch/winding current 
stress than LLC

• All switches ZVS
• Partial ZCS for all 

switches
• Minimal switch/winding 

current stress
• Minimal transformer turns

• Secondary switches ZVS
• Winding current is near DC, 

reducing AC losses
• Output inductor allows 

voltage regulation
• Minimal transformer turns

Drawback
• Higher switching/winding 

losses
• Max transformer turns

• unrealistic ZCS 
condition

• More transformer turns

• Resonant capacitors have 
DC bias

• Larger primary side current 
stress (square wave)

• No ZVS on primary switch
• No ZCS on secondary 

switch

• To achieve high power density, a higher frequency is needed to reduce transformer size. Due to varying input 

voltage requirements, architecture Non-isolate LLC was chosen for this design.

Primary switch
Secondary switch

Topology comparison
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Item Equation

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 loss 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑁𝑁𝑃𝑃𝐼𝐼𝐿𝐿𝐿𝐿_𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑃𝑃 + 𝑁𝑁2
2

𝑄𝑄gd
𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝

+ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 ln
𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝
𝑉𝑉th

𝑅𝑅𝑔𝑔𝑓𝑓𝑠𝑠

Item Equation

Conduction
loss 𝐼𝐼𝑠𝑠𝑠𝑠_𝑅𝑅𝑅𝑅𝑅𝑅

2 � 𝑅𝑅𝑑𝑑𝑑𝑑_𝑜𝑜𝑜𝑜

Item Equation

Driver loss 1
2
𝑄𝑄𝑔𝑔𝑉𝑉𝐷𝐷𝑅𝑅𝑅𝑅𝑓𝑓𝑠𝑠

𝑉𝑉𝑖𝑖𝑖𝑖

𝑆𝑆1

𝑆𝑆4

𝑁𝑁𝑃𝑃

𝐶𝐶𝑟𝑟

+

−

𝑉𝑉𝑜𝑜+ −

𝐶𝐶𝑜𝑜

𝑅𝑅𝐿𝐿

𝑆𝑆2

𝑆𝑆3

𝑁𝑁2

𝐿𝐿𝑟𝑟

𝐿𝐿𝑚𝑚

𝑁𝑁1

𝑄𝑄2

𝑄𝑄1

𝐷𝐷𝐵𝐵𝐵
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐷𝐷𝐵𝐵3
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜3

𝐷𝐷1
𝐶𝐶𝑗𝑗𝑗

𝐷𝐷𝐵𝐵2
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜2

𝐷𝐷𝐵𝐵𝐵
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐷𝐷2
𝐶𝐶𝑗𝑗𝑗

• By analyzing and calculating these losses, the appropriate 

switches can be identified 

• Adjusting dead time or resonance frequency prevents 

body diode conduction, so its loss are ignored.

Topology comparison
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• Since switches 𝑆𝑆3 and 𝑆𝑆4 experience higher voltage stress, switches with higher voltage stress 

ratings are chosen for the primary-side switches.

• Secondary-side switches 𝑄𝑄1 and 𝑄𝑄2 with higher current ratings are chosen and connected in 

parallel to reduce conduction loss.

Comparison of Losses in Switches 𝑆𝑆₁ to 𝑆𝑆₄

Topology comparison
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𝑛𝑛 =
𝑁𝑁𝑃𝑃
𝑁𝑁1

=
𝑁𝑁𝑃𝑃
𝑁𝑁2

𝑉𝑉𝑖𝑖𝑖𝑖
𝑉𝑉𝑜𝑜

= 𝑛𝑛 + 2

𝑁𝑁𝑃𝑃 ∶ 𝑁𝑁1 ∶ 𝑁𝑁2 = 2 ∶ 1 ∶ 1

• The transformer turns ratio can be determined by the power conversion ratio.

• A two-legs core is used as the basis for PCB winding design.

Winding 𝑊𝑊𝑃𝑃 diagram

Winding 𝑊𝑊1 diagram Winding 𝑊𝑊2 diagram
𝑉𝑉𝑖𝑖𝑖𝑖

𝑆𝑆1

𝑆𝑆4

𝑊𝑊𝑃𝑃

𝐶𝐶𝑟𝑟

+

−

𝑉𝑉𝑜𝑜+ −

𝐶𝐶𝑜𝑜

𝑅𝑅𝐿𝐿

𝑆𝑆2

𝑆𝑆3

𝑊𝑊2

𝐿𝐿𝑟𝑟

𝐿𝐿𝑚𝑚

𝑊𝑊1

𝑄𝑄2𝐴𝐴

𝑄𝑄1𝐵𝐵

𝑄𝑄1𝐴𝐴

𝑄𝑄2𝐵𝐵

𝑁𝑁𝑃𝑃 𝑁𝑁2

𝑁𝑁1

PCB Winding Design
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𝑋𝑋𝑃𝑃 10 8 6 4 2

𝑋𝑋1 3 4 5 6 7

𝑋𝑋2 3 4 5 6 7

Equivalent 𝑅𝑅𝑊𝑊𝑊𝑊(𝑅𝑅𝑑𝑑𝑑𝑑) 0.4 0.5 0.66 1 2

Equivalent 𝑅𝑅𝑊𝑊𝑊(𝑅𝑅𝑑𝑑𝑑𝑑) 0.33 0.25 0.2 0.17 0.14

Equivalent 𝑅𝑅𝑊𝑊𝑊(𝑅𝑅𝑑𝑑𝑑𝑑) 0.33 0.25 0.2 0.17 0.14

RMS current of winding 𝑊𝑊𝑃𝑃(𝐼𝐼𝑟𝑟𝑚𝑚𝑚𝑚) 1

RMS current of winding 𝑊𝑊1(𝐼𝐼𝑟𝑟𝑚𝑚𝑚𝑚) 1

RMS current of winding 𝑊𝑊2(𝐼𝐼𝑟𝑟𝑚𝑚𝑚𝑚) 3

Winding 𝑊𝑊𝑃𝑃  𝑅𝑅𝑑𝑑𝑑𝑑  loss 0.4 0.5 0.66 1 2

Winding 𝑊𝑊1 𝑅𝑅𝑑𝑑𝑑𝑑 loss 0.33 0.25 0.2 0.17 0.14

Winding 𝑊𝑊2 𝑅𝑅𝑑𝑑𝑑𝑑  loss 3 2.25 1.8 1.5 1.29

Total winding 𝑅𝑅𝑑𝑑𝑑𝑑 loss 3.73 3 2.66 2.66 3.43

• To achieve high power density, a 16-layer

PCB is used to distribute current stress. The

parallel layers for windings 𝑊𝑊𝑃𝑃, 𝑊𝑊1, and 𝑊𝑊2

being 𝑋𝑋𝑃𝑃, 𝑋𝑋1, and 𝑋𝑋2 , respectively.

• Normalized values are used to compare

losses under different conditions.

• For the integrated resonant capacitor design,

placing the primary winding on the top

outer layer is preferred. Considering via

usage may reduce its integrity, a 6/5/5

winding configuration is adopted.

PCB Winding Design
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Items Spec.

Current 5 A

frequency 1M Hz

Different directions of 
current

Items Spec.

Current 5 A

frequency 1M Hz

Items Spec.

Wire radius 0.5 mm

Wire length 1 mm

frequency 500 kHz

Current Variation : 0~10 AFrequency variation : 50k~1KHz

Items Spec.

Wire radius 0.5 mm

Wire length 1 mm

Current 5 A

Same directions of 
current

• High-frequency current causes skin and eddy effects, concentrating current near the conductor surface.

• Proximity effect causes current to concentrate on adjacent surfaces of two conductors, increasing losses.

 Skin effects
 Proximity effects

PCB Winding Design
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MMF = 𝑁𝑁𝑁𝑁 = 𝐻𝐻𝐻𝐻

𝑚𝑚 =
MMF(𝑒𝑒)

MMF 𝑒𝑒 − MMF(𝑒𝑒 − 1)

𝑅𝑅𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚 = (2𝑚𝑚 − 1)2
ζ
2

sinh ζ − sin(ζ)
cosh ζ + cos(ζ)

𝑅𝑅𝑑𝑑𝑑𝑑

𝑅𝑅𝑎𝑎𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
ζ
2

sinh ζ − sin(ζ)
cosh ζ + cos(ζ)

𝑅𝑅𝑑𝑑𝑑𝑑

𝛿𝛿 =
1
𝜋𝜋𝑓𝑓𝑠𝑠𝜇𝜇
𝜌𝜌  

ζ =
ℎ
𝛿𝛿

ℎ : Conductor thickness

𝛿𝛿 : Skin depth

𝑅𝑅𝑎𝑎𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 : AC resistance due to the skin effect

𝑅𝑅𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 : AC resistance due to the proximity effect

Total AC resistance 𝑅𝑅𝑎𝑎𝑎𝑎_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑅𝑅𝑎𝑎𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑅𝑅𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑅𝑅𝑎𝑎𝑎𝑎 loss = 𝑅𝑅𝑎𝑎𝑎𝑎_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 � 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟
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Non-Interleaved Windings

Interleaved Windings

• Interleaved windings can effectively reduce AC resistance 

MMF(𝑒𝑒) : Final value

MMF(𝑒𝑒 − 1) : Starting value

PCB Winding Design
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Pcv(
kW
m3)

B(T)

DMR53 DMR51WDMR50

PC503F4

• By comparing the PCV curves of different core materials, the 

appropriate material can be selected

• Under the calculation condition of a 1 MHz switching frequency, 

DMEGC’s material DMR53 was selected

Transformer Core Design
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Pcv(
kW
m3)

𝑓𝑓𝑠𝑠(MHz)

DMR53 DMR51WDMR50

PC503F4

• By comparing the PCV curves of different core materials, the 

appropriate material can be selected

• Under the calculation condition of a 1 MHz switching frequency, 

DMEGC’s material DMR53 was selected

Transformer Core Design
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Top view of the UI core

Front view of the UI core

r

R

w

2w

𝑟𝑟 : Center leg radius R : Winding range

a : Core base thickness

𝑙𝑙𝑔𝑔 : Center leg high

• Define the relationship Q between the winding range R 

and the cylinder radius r

R = rQ

• To avoid partial saturation of the magnetic flux, the cross-sectional 

area at the top and bottom of the core must be equal to the cross-

sectional area of the cylinder

leg cross-sectional area Ae = πr2 = 2ar

w = 2R = 2rQ

𝜋𝜋𝑟𝑟2 = a2𝑟𝑟

a =
𝜋𝜋𝑟𝑟 
2

2R

a

a

𝑙𝑙𝑐𝑐
𝑙𝑙𝑔𝑔

𝑙𝑙𝑐𝑐 : air gap

leg cross-sectional area 

Transformer Core Design
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r = 2.2m ~ 3mm

Q = 1.2m ~ 3mm

• After optimizing the core to reduce its volume, reparametrize to simulate copper loss and core loss

Transformer Core Design

89

Copper loss

Core loss
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• Use MATLAB to plot the simulated loss results from Maxwell as a contour map corresponding to the volume.

r = 2.2m ~ 3mm

Q = 1.2m ~ 3mm

Transformer Core Design
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• Plot the optimal total loss curve of the transformer based on the minimum volume for different losses

Optimal design curve

• Due to power density constraints, a design with a 

volume less than 1000mm3 is chosen

Transformer Core Design

91



ECIE Lab. All rights reserved

20mm

30mm

Height : 7.4mm

Parameters Specifications

Input Voltage 40-60Vdc

Output Voltage 10-15Vdc

Output Power 1200W

Switching Frequency 1.08MHz

Peak Efficiency 98.11%

Length / Width / Height 30mm/20mm/7.4mm

Power Density >4430 W/in3

Experimental Verification
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Power density(
kW
in3

)

Efficiency(%)

500 25001500

98

97

3500 4500

99

EPC[1]
1.2kW  97.3%
1.47kW/𝐢𝐢𝐢𝐢𝟑𝟑

EPC[2]
1kW  97.5%
1.22kW/𝐢𝐢𝐢𝐢𝟑𝟑

EPC[3]
1kW  97.5%
5kW/𝐢𝐢𝐢𝐢𝟑𝟑
(only secondary)

VICOR[4]
750W  97%
2.6kW/𝐢𝐢𝐢𝐢𝟑𝟑

MPS[6]
800W  97.5%
3.31kW/𝐢𝐢𝐢𝐢𝟑𝟑

Flex[7]
800W 97.4%
3.3kW/𝐢𝐢𝐢𝐢𝟑𝟑

Flex[8]
1.3W  97.8%
826W/𝐢𝐢𝐢𝐢𝟑𝟑

Delta[9]
800W  98%
3kW/𝐢𝐢𝐢𝐢𝟑𝟑

VICOR[5]
1.2kW  98%
3kW/𝐢𝐢𝐢𝐢𝟑𝟑

Ref[12]
1kW  98.5%
1.07kW/𝐢𝐢𝐢𝐢𝟑𝟑

Ref [12]
1kW  97.8%
5.5kW/𝐢𝐢𝐢𝐢𝟑𝟑

Ref [13]
840W  99.1%
2.5kW/𝐢𝐢𝐢𝐢𝟑𝟑 Ref [15]

720W  99%
4.07kW/𝐢𝐢𝐢𝐢𝟑𝟑

Ref [14]
420W  99.1%
800W/𝐢𝐢𝐢𝐢𝟑𝟑

Ref [16]
720W  96.5%
2kW/𝐢𝐢𝐢𝐢𝟑𝟑

Ref [17]
900W  98.4%
1.6kW/𝐢𝐢𝐢𝐢𝟑𝟑

TI[11]
1.1kW  97.8%
1.3kW/𝐢𝐢𝐢𝐢𝟑𝟑

Commercially available products
IEEE Paper

This work
1.2kW  98.1%
4.43kW/𝐢𝐢𝐢𝐢𝟑𝟑
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𝑉𝑉𝑖𝑖𝑖𝑖 : 48V, 10% load

𝑉𝑉𝑖𝑖𝑖𝑖 : 48V, 50% load

𝑆𝑆1

𝑆𝑆4

𝐶𝐶𝑟𝑟

𝑉𝑉𝑖𝑖𝑖𝑖

+

−

𝑉𝑉𝑜𝑜+ −

𝐶𝐶𝑜𝑜
𝑅𝑅𝐿𝐿

𝑆𝑆2

𝑆𝑆3

𝐿𝐿𝑟𝑟

𝐿𝐿𝑚𝑚

𝑄𝑄2

𝑄𝑄3

𝑄𝑄1

𝑄𝑄4

𝑁𝑁𝑃𝑃 𝑁𝑁2

𝑁𝑁1

Voltage across switch 𝑆𝑆2

Voltage across switch 𝑄𝑄3Voltage across switch 𝑆𝑆4

Voltage across switch 𝑆𝑆2

Voltage across switch 𝑄𝑄3Voltage across switch 𝑆𝑆4

Voltage across switch 𝑆𝑆2

Voltage across switch 𝑄𝑄3Voltage across switch 𝑆𝑆4

• With a 48V input, 30 ns dead 

time, and 1.08 MHz switching 

frequency

• ZVS is achieved under all load 

conditions.
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𝑉𝑉𝑖𝑖𝑖𝑖 = 54V

𝑉𝑉𝑖𝑖𝑖𝑖 = 40V 𝑉𝑉𝑜𝑜(V)

Output power(W)

𝑉𝑉𝑖𝑖𝑖𝑖 40V 48V 54V 60V

Peak 
Efficiency

98.11% 98.10% 97.82% 97.47%

Full Load 
Efficiency

95.39% 96.27% 96.96% 97.05%

𝑉𝑉𝑜𝑜(10% load) 9.99V 12V 13.51V 15.02V

𝑉𝑉𝑜𝑜 (100% load) 9.54V 11.58V 13.15V 14.69V

• Due to excessive temperature, the input of 40V was only 

tested up to 1100W.

• The peak efficiency reached 98.11%.

• The switching frequency was 1.08 MHz.

𝑉𝑉𝑖𝑖𝑖𝑖 = 60V

𝑉𝑉𝑖𝑖𝑖𝑖 = 48V

𝑉𝑉𝑖𝑖𝑖𝑖 = 54V

𝑉𝑉𝑖𝑖𝑖𝑖 = 40V
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• Due to proximity effects, edge effects, and non-ideal conditions, actual transformer losses are difficult to calculate.

• The designed PCB winding is imported into Maxwell and simulated with Simplorer to estimate transformer losses.

48 V input, 1.2 kW simulation results:

 Copper loss: 14.45 W

 Core loss: 1.54 W
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• Loss analysis shows that beyond conduction and copper losses, other losses (via, PCB, capacitor, etc.) also exist. Optimizing them can 

further improve efficiency.

• Smaller primary-side switches (3 mm × 3 mm) result in higher conduction losses compared to the secondary side. Future designs 

must balance switch size and power loss.
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Driver loss_sec
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Key Technologies for High Power Density and High Efficiency Converters

Summary of Key Technical Insights
• Topology Optimization: Select soft-switching topologies (e.g., ZVS/ZCS) to reduce switching losses
• Magnetics Integration and Design: High-frequency operation requires careful core and winding 

optimization
• Component Selection: Utilize wide bandgap devices (GaN/SiC) and low-ESR/ESL capacitors for 

improved performance
• Thermal Management: Higher power density increases thermal stress; early thermal modeling is 

essential

 Importance of Pre-Simulation
• Identifies potential hotspots and EMI issues early in the design stage
• Enables optimization of magnetics, PCB layout, and thermal paths before hardware prototyping
• Reduces the number of design iterations and shortens development cycles
• Supports system-level trade-offs in performance, size, and cost

Conclusion: 
Pre-simulation is a critical first step toward achieving high efficiency and reliability in high power density 
converter designs.
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This image was generated by ChatGPT (OpenAI) based on a user-provided concept. This image is intended for educational, research, or creative non-commercial use.
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ECIE Lab Demonstration
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